首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of coating for manufacturing DNA chips was constructed of the basis of an organic-inorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5-1.6 pmol/mm2. Immobilization with a higher density (10-12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing selectively activated terminal phosphate groups. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.  相似文献   

2.
We describe in this paper the preparation and characterization of semicarbazide glass slides and their use for the fabrication of microarrays using site-specific alpha-oxo semicarbazone ligation. The functional density and homogeneity of the semicarbazide glass slides were optimized by analyzing the reactivity of the layer toward a synthetic glyoxylyl fluorescent probe. Oligonucleotide microarrays were prepared by site-specific immobilization of glyoxylyl oligodeoxynucleotides. The slides were directly used in the hybridization assays using fluorescence detection and displayed a significant gain in sensibility as compared to the aldehyde glass slide/amino oligodeoxynucleotide chemistry. Semicarbazide slides were also used for the immobilization of a biotinylated peptide alpha-oxo aldehyde. The peptide microarrays allowed model interaction studies with streptavidin or an anti-biotin antibody.  相似文献   

3.
A new type of coating for manufacturing DNA chips was constructed on the basis of an organicinorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5–1.6 pmol/mm2. Immobilization with a higher density (10–12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing a selectively activated terminal phosphate group. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.  相似文献   

4.
The present study reported proof-of-principle for a kinase assay approach that can detect specific peptide phosphorylation events. The method involves attachment of peptides onto commercial aminosilane and polycarbodiimide-coated glass slides, using a newly developed DNattach linker system that consists of a poly(dT) tail (Nisshinbo Industries Inc.), followed by a detection step using fluorescently labeled antiphosphoamino acid antibodies. The linker-modified peptides are efficiently synthesized by Michael addition between maleimido-modified peptides and thiol-containing DNattach. Specific covalent immobilization of the modified peptides onto aminosilane and poly carbodiimide-coated slides is then achieved by short exposure to UV-light. Highly selective and quantitative recognition by standard antiphosphoamino acid antibodies (antiphosphotyrosine and anti-phosphoGFAP) and kinases (c-Src and PKA) to the corresponding modified peptides on the microarray spots is demonstrated. Furthermore, we found that this immobilization method provides greater signal-to-noise ratio and better discrimination ability of phosphorylated amino acids than does the conventional immobilization technique. The phosphorylation pattern of target sequences, detected using fluorescently labeled antiphosphoamino acid antibodies, revealed that the linker system preference of the kinase is determined by its activity profile.  相似文献   

5.
We describe novel peptide-protein microarrays, which were fabricated using semicarbazide glass slides that permitted the immobilization of glyoxylyl peptides by site-specific ligation and the immobilization of proteins by physisorption. The arrays permitted the simultaneous serodetection of antibodies directed against hepatitis C virus (HCV core p21 15-45 peptide, NS4 1925-1947 peptide, core, NS3, NS4, and mixture of core, NS3, NS4, and NS5 antigens), hepatitis B virus (HBc, HBe, and HBs), human immunodeficiency virus (Gp41 and Gp120 for HIV-I and Gp36 for HIV-II), Epstein-Barr virus (VCAp18 153-176 peptide), and syphilis (rTpN47 and rTpN17) antigens using an immunofluorescence assay. Peptide-protein microarrays displayed high signal-to-noise ratios, sensitivities, and specificities for the detection of antibodies as revealed by the analysis of a collection of human sera referenced against these five pathogens.  相似文献   

6.
A novel class of chemical microchips consisting of glass microscope slides was prepared for the covalent attachment of small molecule ligands and peptides through site-specific oxime bond or thiazolidine ring ligation reaction. Commercially available microscope slides were thoroughly cleaned and derivatized with (3-aminopropyl)triethoxysilane (APTES). The amino slides were then converted to glyoxylyl derivatives via two different routes: (1) coupling of Fmoc-Ser followed by deprotection and oxidation, or (2) coupling with protected glyoxylic acid and final deprotection with HCl. Biotin or peptide ligands derivatized at the carboxyl terminus with a 4,7,10-trioxa-1,13-tridecanediamine succinimic acid linker and an amino-oxy group or a 1,2-amino-thiol group (e.g., cysteine with a free N(alpha)-amino group) were printed onto these slides using a DNA microarray spotter. After chemical ligation, the microarray of immobilized ligands was analyzed with three different biological assays: (1) protein-binding assay with fluorescence detection, (2) functional phosphorylation assay using [gamma(33)P]-ATP and specific protein kinase to label peptide substrate spots, and (3) adhesion assay with intact cells. In the cell adhesion assay, not only can we determine the binding specificity of the peptide against different cell lines, we can also determine functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip. This chemical microchip system enables us to rapidly analyze the functional properties of numerous ligands that we have identified from the "one-bead one-compound" combinatorial library method.  相似文献   

7.
Antibody microarrays have the potential to revolutionize protein diagnostics. The major problems in the fabrication of antibody arrays, however, concern the reproducibility and homogeneity of the attachment of the proteins on the solid substrate. We here compare the DNA-directed immobilization (DDI) method with two conventional strategies for immobilization of antibodies on glass substrates. DDI is based on the self-assembly of semisynthetic DNA-streptavidin conjugates which converts an array of DNA oligomers into an antibody microarray. DDI was compared with direct spotting of antibodies on chemically activated glass slides and with immobilization of biotinylated antibodies on streptavidin-coated slides. The immobilized antibodies were used as capture reagents in a two-sided (sandwich) immunoassay for the quantification of rabbit IgG as a model antigen. Detection limits down to 0.001nM (150 pg/mL) were attained with all three array formats; however, DDI and direct spotting of the antibodies led to the highest fluorescence intensities. DDI led to the best spot homogeneity and intra- and interexperimental reproducibility. Moreover, DDI allowed highly economical use of antibody materials; that is, at least 100-fold less antibody is needed for preparing an array by DDI instead of by direct spotting. Taking into account the greater versatility and convenience of handling of the self-assembly approach, this study demonstrates that DDI is an advantageous alternative for generating versatile and robust protein arrays.  相似文献   

8.
Narla SN  Sun XL 《Biomacromolecules》2012,13(5):1675-1682
We report a chemoenzymatic synthesis of chain-end functionalized sialyllactose-containing glycopolymers with different linkages and their oriented immobilization for glycoarray and SPR-based glyco-biosensor applications. Specifically, O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were synthesized by enzymatic α2,3- and α2,6-sialylation of a lactose-containing glycopolymer that was synthesized by cyanoxyl-mediated free radical polymerization. (1)H NMR showed almost quantitative α2,3- and α2,6-sialylation. The O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were printed onto amine-functionalized glass slides via isourea bond formation for glycoarray formation. Specific protein binding activity of the arrays was confirmed with α2,3- and α2,6-sialyl specific binding lectins together with inhibition assays. Further, immobilizing O-cyanate chain-end functionalized sialyllactose-containing glycopolymers onto amine-modified SPR chip via isourea bond formation afforded SPR-based glyco-biosensor, which showed specific binding activity for lectins and influenza viral hemagglutinins (HA). These sialyloligo-macroligand derived glycoarray and SPR-based glyco-biosensor are closely to mimic 3D nature presentation of sialyloligosaccharides and will provide important high-throughput tools for virus diagnosis and potential antiviral drug candidates screening applications.  相似文献   

9.
With the continuing development of micro-total analysis systems and sensitive biosensing technologies, it is often desirable to immobilize biomolecules onto a surface in a small well-defined area. A novel method was developed to electrochemically attach DNA probes to micron-sized regions of a gold surface using biotin-LC-hydrazide (BH). Previously, we have found that the radical produced during the oxidation of BH will attach to a wide variety of electroactive surfaces. An array of micron-sized gold band electrodes (75 microm wide) was fabricated onto glass microscope slides and BH was deposited onto each electrode through the application of an oxidizing potential. Subsequent attachment of avidin to the biotinylated surface created the 'molecular sandwich' architecture necessary for further immobilization of biotinylated biomolecules to the surface. In this work, we utilized biotinylated DNA probes of varying sequence to illustrate the specificity of the attachment scheme. The immobilization of avidin, DNA probe, and hybridization of DNA target is visualized with fluorescence tags and the spatially selective attachment and hybridization of unique DNA sequences is demonstrated.  相似文献   

10.
We report a novel generation of peptide arrays fabricated by site-specific ligation of glyoxylyl peptides onto glass slides covered by a semicarbazide sol-gel layer. These arrays allowed the highly sensitive and specific detection of antibodies in very small blood samples from infected individuals using three model peptidic epitopes (HCV Core and NS4, EBV Capsid) in an immunofluorescence assay. Comparison with standard enzyme-linked immunosorbent assays (ELISAs) demonstrated a large gain in sensitivity and specificity. These unique properties, combined with the possibility to immobilize glycoproteins such as antibodies, offer the possibility to perform sandwich immunofluorescent assays in a highly parallel format.  相似文献   

11.
The use of prepacked capillary columns for immobilizing proteins and peptides for solid-phase Edman degradation is described. Capillary tubes with an internal volume of about 30 microliters are filled with glass beads bearing isothiocyanato groups (DITC-glass), aminophenyl groups (AP-glass), or aminoethylaminopropyl groups (AEAP-glass) and are sealed with porous plugs. Proteins or peptides in appropriate buffers are introduced into the columns by capillary action and are covalently coupled to the glass beads, either by reaction of lysine side-chain amino groups with DITC-glass, by carbodi-imide-mediated reaction of carboxyl groups with AP-glass, or by reaction of homoserine lactone groups with AEAP-glass. Optimization of attachment conditions is described. The capillary columns are loaded into the sequencer and, when sequencing has been completed, are discarded. This technique greatly simplifies polypeptide immobilization and is suitable for microsequencing (less than 50-1000 pmol) or macrosequencing (1-50 nmol).  相似文献   

12.
In the microarray format of the minisequencing method multiple oligonucleotide primers immobilised on a glass surface are extended with fluorescent ddNTPs using a DNA polymerase. The method is a promising tool for large-scale single nucleotide polymorphism (SNP) detection. We have compared eight chemical methods for covalent immobilisation of the oligonucleotide primers on glass surfaces. We included both commercially available, activated slides and slides that were modified by ourselves. In the comparison the differently derivatised glass slides were evaluated with respect to background fluorescence, efficiency of attaching oligonucleotides and performance of the primer arrays in minisequencing reactions. We found that there are significant differences in background fluorescence levels among the different coatings, and that the attachment efficiency, which was measured indirectly using extension by terminal transferase, varied largely depending on which immobilisation strategy was used. We also found that the attachment chemistry affects the genotyping accuracy, when minisequencing on microarrays is used as the genotyping method. The best genotyping results were observed using mercaptosilane-coated slides attaching disulfide-modified oligonucleotides.  相似文献   

13.
Attachment of oligodeoxynucleotides (ODNs) containing benzaldehyde (BAL) groups to semicarbazide-coated glass (SC-glass) slides is described. 5′-BAL-ODNs are prepared using automated DNA synthesis and an acetal-protected BAL phosphoramidite reagent. The hydrophobic protecting group simplifies purification of BAL-ODNs by reverse phase HPLC and is easily removed using standard acid treatment. The electrophilic BAL-ODNs are stable in solution, but react specifically with semicarbazide groups to give semicarbazone bonds. Glass slides were treated with a semicarbazide silane to give SC-glass. BAL-ODNs are coupled to the SC-glass surface by a simple one-step procedure that allows rapid, efficient and stable attachment. Hand-spotted arrays of BAL-ODNs were prepared to evaluate loading density and hybridization properties of immobilized probes. Hybridization to radiolabeled target strands shows that at least 30% of the coupled ODNs were available for hybridization at maximum immobilization density. The array was used to probe single nucleotide polymorphisms in synthetic DNA targets, and PCR products were correctly genotyped using the same macroarray. Application of this chemistry to manufacturing of DNA microarrays for sequence analysis is discussed.  相似文献   

14.
For protein chip construction, protein immobilization on the surface of the glass slide is essential. It was previously reported that glass slides are embedded with chemicals that contain primary amines and aldehydes for protein immobilization. We fabricated a plasma-polymerized ethylenediamine (PPEDA)-coated slide that exposed primary amines. For the plasma polymer deposition on the glass slide, the inductively coupled plasma (ICP) power was found to be a critical factor in sustaining a high density of amine on the surface of the PPEDA films. We prepared PPEDA-coated slides at three different ICP powers (3, 30, or 70 W). In the slide that was prepared at a low ICP power (3 W), we detected a high density of primary amine. Therefore, the fluorescein isothiocyanate-conjugated immunoglobulin G (IgG) was highly immobilized to the PPEDA-coated slide that was prepared at the low ICP power. For protein immobilization, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used as a cross-linker. The immobilization of the protein to the PPEDA-coated slide was carried out by consecutive incubations with 1 mg/ml EDC for 5 min and 0.1 mg/ml IgG for 1 h. This efficiently produced the functionally active protein-immobilized slide. Therefore, this work shows that the plasma technique can be applied to produce a high-quality glass surface for the immobilization of proteins and other materials.  相似文献   

15.
用氨基修饰的载玻片制作cDNA微阵列   总被引:12,自引:0,他引:12  
cDNA微阵列已在基因差异表达、寻找新基因等研究方面获得广泛应用,但有关cDNA微阵列的制作,目前多采用多聚赖氨酸修饰的载玻片为探针固定载体,固定效果较差.用氨基硅烷处理的载玻片为载体制作cDNA微阵列,然后考察其固定效率、检测灵敏度、稳定性、实用性等指标.结果表明,用氨基硅烷处理的载玻片具有比多聚赖氨酸更令人满意的核酸固定效率、检测灵敏度,且稳定实用.因此,用氨基硅烷修饰的载玻片为探针固定载体制作cDNA微阵列较为理想.  相似文献   

16.
Site-specific modification of peptides and proteins is an important area of basic research for preparation of well-defined biosensors and probes. The unique properties of aminooxy group present an opportunity for chemoselective site-specific immobilization of peptides to prepare well-defined biosensors. We have prepared FLAG peptide derivatives containing L-epsilon-aminooxylysine (L-epsilon-AOLys, 1a) and L-lysine units in their sequence at the C- and N-terminals via solid-phase synthesis. Site-specific modification of peptides through aminooxy group was demonstrated in the preparation of biosensors and selective conjugation in the preparation of biotinylated probes. Effect of the incorporation of L-epsilon-AOLys (1a) into the peptide sequence and its subsequent labeling on the FLAG epitopic character was measured using a surface plasmon resonance detector. It was found that incorporation of L-epsilon-AOLys (1a) into the FLAG peptide and site-specific immobilization through aminooxy group preserved the integrity of FLAG epitope.  相似文献   

17.
Facile modification of oligodeoxyribonucleotides is required for efficient immobilization to a pre-activated glass surface. This report presents an oligodeoxyribonucleotide which contains a hairpin stem–loop structure with multiple phosphorothioate moieties in the loop. These moieties are used to anchor the oligo to glass slides that are pre-activated with bromoacetamidopropylsilane. The efficiency of the attachment reaction was improved by increasing the number of phosphorothioates in the loop, as shown in the remarkable enhancement of template hybridization and single base extension through catalysis by DNA polymerase. The loop and stem presumably serve as lateral spacers between neighboring oligodeoxyribonucleotides and as a linker arm between the glass surface and the single-stranded sequence of interest. The oligodeoxyribonucleotides of this hairpin stem–loop architecture with multiple phosphorothioate moieties have broad application in DNA chip-based gene analysis.  相似文献   

18.
The influence of surface attachment and growth on inhibition of the ammonia oxidizing bacterium, Nitrosomonas europaea, by nitrapyrin was investigated in liquid culture in the presence and absence of glass slides. Significant attachment to glass slides occurred in the absence of ammonia, but the extent of attachment was not affected by nitrapyrin, nor by previous culture of cells in medium containing nitrapyrin. The presence of glass slides affected neither the specific growth rate of N. europaea, measured by changes in nitrite concentration, nor inhibition by nitrapyrin. Inhibitory effects of nitrapyrin on increases in nitrite concentration and in free cell concentration were similar, but greater effects were observed on changes in attached cell concentration. Established biofilms on glass slides grew at a lower specific growth rate than freely suspended cells. Both biofilm cells, and those detached from the biofilm, were protected from inhibition. A mechanism for protection of biofilm populations is proposed involving reduced sensitivity of slowly growing cells producing extracellular polymeric material. Offprint requests to.: J. I. Prosser.  相似文献   

19.
The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.  相似文献   

20.
Synthesis of a new heterobifunctional reagent, [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)-triethoxysilylpropyl-3-amine] (NTMTA) is described for the immobilization of a variety of biomolecules on glass surface. Its triethoxysilyl group reacts with glass surface and trifluoroethanesulfonate ester structure reacts selectively with aminoalkyl/mercaptoalkyl function in biomolecules. The immobilization can be achieved by two ways involving two steps. The first route involves the reaction of NTMTA with glass beads followed by attachment of aminoalkyl- or mercaptoalkylated biomolecules. The second one involves the reaction of biomolecules, viz., oligonucleotides, proteins, etc., with NTMTA via their aminoalkyl or mercaptoalkyl functions to form a biomolecule conjugate, which is then reacted with glass beads (unmodified) to complete immobilization process. This has been demonstrated by successful immobilization of 5'-mercaptoalkyl- or aminoalkylated oligonucleotides and some commonly used enzymes on glass beads using NTMTA reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号