首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations affecting skeletal muscle myofibril structure in the zebrafish   总被引:4,自引:0,他引:4  
We describe embryonic lethal mutations in the zebrafish, Brachydanio rerio, which affect organization of skeletal muscle myofibrils. The mutations, fub-1(b45) and fub-1(b126), were independently isolated from progeny of gamma-irradiated females. Each segregates as a single recessive gene: b45 is located about 23 map units from its centromere. The b126 mutation has a similar but slightly larger apparent gene-centromere distance and a less severe phenotype. The two mutations fail to complement, suggesting that they are allelic. Homozygous b45 mutant embryos are paralyzed, and their axial skeletal muscle cells are unstriated, containing severely disorganized myofibrillar components. Gel-electrophoretic comparisons of b45 mutant and wild-type muscle proteins failed to reveal absent or altered major myofibrillar proteins. Embryos genetically mosaic for b45 were also phenotypically mosaic, suggesting that the defect is cell-autonomous. We suggest that these mutations identify a gene required for proper organization of skeletal muscle myofibrils, and that the more severe mutation may represent a null allele.  相似文献   

2.
3.
4.
The isotropic mobility of separate regions of the intact molecule of immunoglobulin M (IgM) and its Fab and (Fc)5 fragments was studied using spin-labeling of carbohydrate (2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl) and peptide (2,2,5,5-tetramethyl-3-dichlorotriazinylaminopyrrolidine-1-oxyl) moieties. The spin-labeled oligosaccharide groups (OGs) in the Fab region are shown to have much more amplitude of anisotropic motion than those in the (Fc)5 region. The spin label in the latter is evidently attached in the C mu 3 domain to one of its OGs which is probably stabilized by ionic contacts between terminal N-acetylneuraminic acid residue and the peptide moiety of the IgM molecule. When the amount of the glycosidase-cleaved carbohydrate does not exceed 10-15%, most OGs affected are of the Fab region. Upon profound splitting (greater than or equal to 50%) the OGs of the (Fc)5 region are also affected; that results evidently in loosening the ionic contacts between the shortened OGs and the peptide moiety of IgM, and consequently in increasing mobility of the former. The structure of the (Fc)5 region of IgM is labile; after detaching this moiety from the intact IgM molecule, its structure is stabilized, but one of its domains (C mu 3) becomes more mobile than it is in the intact IgM molecule; at the same time the amplitude of anisotropic motion of OG bound here is decreased. In the latter case, this decrease depends on the sequence of spin-labeling and fragmentation. The most probable cause of stabilization of the (Fc)5 fragment is the heating of IgM solution to 56 degree C during fragmentation with trypsin. At this temperature the tau value for the (Fc)5 fragment is unusually low, equaling 23 ns. The spin-labeling in the peptide part of IgM occurs mostly in the Fab region which is a rather rigid moiety as expected.  相似文献   

5.
Wild type cells of the green alga Chlamydomonas reinhardtii can grow in the in the dark by taking up and respiring exogenously supplied acetate. Obligate photoautotrophic (dark dier, dk) mutants of this alga have been selected which grow at near wild type rates in the light, but rapidly die when transferred to darkness because of defects in mitochondrial structure and function. In crosses of the dk mutants to wild type, the majority of the mutants are inherited in a mendelian fashion, although two have been isolated which are inherited in a clearly nonmendelian fashion. Nine mendelian dk mutants have been analyzed in detail, and belong to eight different complementation groups representing eight gene loci. These mutants have been tentatively grouped into three classes on the basis of the pleiotropic nature of their phenotypic defects. Mutants in Class I have gross alterations in the ultrastructure of their mitochondrial inner membranes together with deficiencies in cytochrome oxidase and antimycin/rotenone-sensitive NADH-cytochrome c reductase activities. Mutants in Class II have a variety of less severe alterations in mitochondrial ultrastructure and deficiencies in cytochrome oxidase activity. Mutants in Class III have normal or near normal mitochondrial ultrastructure and reduced cytochrome oxidase activity. Eight of the nine mutants show corresponding reductions in cyanide-sensitive respiration.  相似文献   

6.
Mutagenesis throughout the single-chain urokinase-type plasminogen activator (scu-PA) cDNA molecule, followed by expression of the mutant genes and secretion of the resulting mutant proteins from yeast, has been used to determine the amino acid residues important for activity of scu-PA molecules. Twelve out of 13 colonies secreting variant scu-PA molecules with decreased ability to form a zone of fibrinolysis had mutant genes with a single codon alteration in the serine protease encoding domain (B-chain). Many of these changes are of highly conserved residues in the serine proteases and are consequently of considerable interest. A model three-dimensional structure of the protease domain of urokinase was used to explain the basis for the effects of these down mutations. The model showed that the strongest down mutations result from either interference of the mutated side chain with substrate binding at the active site or the introduction of bulky or charged groups at structurally sensitive internal positions in the molecule. Attempts to find second site revertants of five down mutants, altered either at the plasmin activation site or near the serine at the active site, only resulted in same-site revertants, with the original or closely related amino acids restored.  相似文献   

7.
Mutations affecting gyrase in Haemophilus influenzae.   总被引:1,自引:3,他引:1       下载免费PDF全文
Mutants separately resistant to novobiocin, coumermycin, nalidixic acid, and oxolinic acid contained gyrase activity as measured in vitro that was resistant to the antibiotics, indicating that the mutations represented structural alterations of the enzyme. One Novr mutant contained an altered B subunit of the enzyme, as judged by the ability of a plasmid, pNov1, containing the mutation to complement a temperature-sensitive gyrase B mutation in Escherichia coli and to cause novobiocin resistance in that strain. Three other Novr mutations did not confer antibiotic resistance to the gyrase but appeared to increase the amount of active enzyme in the cell. One of these, novB1, could only act in cis, whereas a new mutation, novC, could act in trans. An RNA polymerase mutation partially substituted for the novB1 mutation, suggesting that novB1 may be a mutation in a promoter region for the B subunit gene. Growth responses of strains containing various combinations of mutations on plasmids or on the chromosome indicated that low-level resistance to novobiocin or coumermycin may have resulted from multiple copies of wild-type genes coding for the gyrase B subunit, whereas high-level resistance required a structural change in the gyrase B gene and was also dependent on alteration in a regulatory region. When there was mismatch at the novB locus, with the novB1 mutation either on a plasmid or the chromosome, and the corresponding wild-type gene present in trans, chromosome to plasmid recombination during transformation was much higher than when the genes matched, probably because plasmid to chromosome recombination, eliminating the plasmid, was inhibited by the mismatch.  相似文献   

8.
Pseudomonas putida grown on valine produces two lipoamide dehydrogenases, LPD-glu (Mr, 56,000 and LPD-val (Mr, 49,000). The 49,000-dalton protein is used by P. putida for branched-chain keto acid dehydrogenase, whereas the 56,000-dalton protein is presumably used for pyruvate and 2-ketoglutarate dehydrogenases. The objective of this study was to isolate and characterize mutants of P. putida with mutations affecting lipoamide dehydrogenases in order to study the relationship of these two proteins. Mutant JS287 lacked LPD-val, the lipoamide dehydrogenase which is induced by growth on valine and is specific for branched-chain keto acid dehydrogenase, and had normal amounts of LPD-glu, the lipoamide dehydrogenase which is formed during growth on glucose and which is probably used by both pyruvate and 2-ketoglutarate dehydrogenases. Mutant JS94 was a pleiotropic mutant with defects in 2-ketoglutarate, branched-chain, and lipoamide dehydrogenases. Proteolysis of LPD-glu and LPD-val produced completely different digestion products, suggesting that these two proteins are products of separate structural genes. Antisera prepared against LPD-glu reacted only with LPD-glu, whereas antisera prepared against LPD-val reacted with LPD-val and cross-reacted with LPD-glu. Although mutant JS94 did not produce active lipoamide dehydrogenase, cell-free extracts of this mutant contained a protein which cross-reacted with anti-LPD-val.  相似文献   

9.
The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine.  相似文献   

10.
11.
Like ricin, Escherichia coli Shiga-like toxin I (SLT-I) inactivates eukaryotic ribosomes by catalytically depurinating adenosine 4324 in 28S rRNA. Although the primary structure of the enzymatic portion of the molecule (Slt-IA) is known to contain regions of significant homology to the ricin A chain (RTA), and although certain residues have been implicated in catalysis, the crystal structure of Slt-IA has not been solved nor has the geometry of its active site been well defined. In order to derive a more complete understanding of the nature of the Slt-IA active site, we placed the slt-IA gene under control of an inducible promoter in Saccharomyces cerevisiae. Induction of the cloned element was lethal to the host. This lethality was the basis for selection of an attenuated mutant of Slt-IA changed at tyrosine 77, a locus not previously linked to the active site. As well, it permitted evaluation of the toxicity of a number of mutant Slt-IA cassettes that we constructed in vitro. Putative active-site residues implicated in this fashion and in other studies were mapped to an energy-minimized computer model of Slt-IA that had been generated on the basis of the known crystal structure of RTA. A cleft was identified on one face of the protein in which all implicated residues clustered, irrespective of their distances from one another in the primary structure of the molecule. Many of the chemical features anticipated in the active site of an RNA N-glycosidase are indeed present on the amino acid side chains occupying the cleft.  相似文献   

12.
C E Wilde  M E Koshland 《Biochemistry》1978,17(16):3209-3214
The repolymerization of human IgM following mild reductive cleavage was studied as a model for intracellular polymer assembly. Repolymerization was found to require the presence of J chain and a disulfide exchanging system which could be furnished either intrinsically by the use of the monofunctional thiol mercaptoethylamine or extrinsically by the inclusion of a protein-mercaptan mixed disulfide, and/or a disulfide exchanging enzyme. The degree of repolymerization was dependent on the extent of monomer reduction and the product covalently incorporated one J chain per five monomer units. Disulfide exchanging enzyme probably served as a source of mixed disulfides rather than as an enzymatic catalyst of the reaction. These results are discussed in terms of a tentative mechanism for IgM polymerization.  相似文献   

13.
Eukaryotic chromosomal DNA is licensed for replication precisely once in each cell cycle. The mini-chromosome maintenance (MCM) complex plays a role in this replication licensing. We have determined the structure of a fragment of MCM from Methanobacterium thermoautotrophicum (mtMCM), a model system for eukaryotic MCM. The structure reveals a novel dodecameric architecture with a remarkably long central channel. The channel surface has an unusually high positive charge and binds DNA. We also show that the structure of the N-terminal fragment is conserved for all MCMs proteins despite highly divergent sequences, suggesting a common architecture for a similar task: gripping/remodeling DNA and regulating MCM activity. An mtMCM mutant protein equivalent to a yeast MCM5 (CDC46) protein with the bob1 mutation at its N terminus has only subtle structural changes, suggesting a Cdc7-bypass mechanism by Bob1 in yeast. Yeast bypass experiments using MCM5 mutant proteins support the hypothesis for the bypass mechanism.  相似文献   

14.
Human IgM molecules were treated with Na(2)SO(3) or mercaptoethylamine in concentrations ranging from 2 to 14mm or 2 to 22mm respectively. The dissociation of IgM to IgM(s) varied from 0% to 100%. At the intermediate concentrations of either reagent the amount of freed J chains was less than expected. In an attempt to find an explanation for this, IgM was partially dissociated to IgM(s) with mercaptoethylamine. The IgM(s) isolated by gel filtration was divided according to the ascending and descending portions of the elution curve. These portions were treated with 24mm-mercaptoethylamine and analysed for the presence of J chains. Only the ascending portion contained free J chains. Thus, after mild reduction where not all the IgM molecules are dissociated to IgM(s), some J chains remain covalently attached to some IgM(s) molecules although most of the J chains are freed. It was concluded that the J chain could serve as a ;hitch' for IgM(s) molecules forming intact IgM.  相似文献   

15.
The Trg transducer mediates chemotactic response to galactose and ribose by interacting, respectively, with sugar-occupied galactose- and ribose-binding proteins. Adaptation is linked to methylation of specific glutamyl residues of the Trg protein. This study characterized two trg mutations that affect interaction with binding protein ligands but do not affect methylation or adaptation. The mutant phenotypes indicated that the steady-state activity of methyl-accepting sites is independent of ligand-binding activity. The mutation trg-8 changed arginine 85 to histidine, and trg-19 changed glycine 151 to aspartate. The locations of the mutational changes provided direct evidence for functioning of the amino-terminal domain of Trg in ligand recognition. Cross-inhibition of tactic sensitivity by the two Trg-linked attractants implies competition for a common site on Trg. However, the single amino acid substitution caused by trg-19 greatly reduced the response to galactose but left unperturbed the response to ribose. Thus Trg must recognize the two sugar-binding proteins at nonidentical sites, and the complementary sites on the respective binding proteins should differ. trg-8 mutants were substantially defective in the response to both galactose and ribose. An increase in cellular content of Trg-8 protein improved the response to galactose but not to ribose. It appears that Trg-8 protein is defective in the generation of the putative conformational change induced by ligand interaction. The asymmetry of the mutational defect implies that functional separation of interaction sites could persist beyond the initial stage of ligand binding.  相似文献   

16.
Revertants of a colcemid-resistant Chinese hamster ovary cell line with an altered (D45Y) beta-tubulin have allowed the identification of four cis-acting mutations (L187R, Y398C, a 12-amino acid in-frame deletion, and a C-terminal truncation) that act by destabilizing the mutant tubulin and preventing it from incorporating into microtubules. These unstable beta-tubulins fail to form heterodimers and are predominantly found in association with the chaperonin CCT, suggesting that they cannot undergo productive folding. In agreement with these in vivo observations, we show that the defective beta-tubulins do not stably interact with cofactors involved in the tubulin folding pathway and, hence, fail to exchange with beta-tubulin in purified alphabeta heterodimers. Treatment of cells with MG132 causes an accumulation of the aberrant tubulins, indicating that improperly folded beta-tubulin is degraded by the proteasome. Rapid degradation of the mutant tubulin does not elicit compensatory changes in wild-type tubulin synthesis or assembly. Instead, loss of beta-tubulin from the mutant allele causes a 30-40% decrease in cellular tubulin content with no obvious effect on cell growth or survival.  相似文献   

17.
A number of mutations are known to disturb the development and function of the hypothalamic-pituitary-gonadal axis. They affect hypothalamic-pituitary-gonadal function at multiple levels, from the migration of gonadotropin releasing hormone neurons to the hypothalamus right through to gonadotropin action in the ovary and testis. Most of the mutations are inactivating, causing various forms of hypogonadism. Exceptions are the activating mutations of the luteinizing hormone receptor, causing male-limited gonadotropin-independent precocious puberty. The human mutations and genetically modified animal models have clarified the molecular pathogenesis of hypogonadism and such disorders can now be diagnosed using molecular biological techniques, enabling selection of specific treatments and appropriate counselling of patients and their families.  相似文献   

18.
Ascidians are among the most distant chordate relatives of the vertebrates. However, ascidians share many features with vertebrates including a notochord and hollow dorsal nerve cord. A screen for N-ethyl-N-nitrosourea (ENU)-induced mutations affecting early development in the ascidian Ciona savignyi resulted in the isolation of a number of mutants including the complementing notochord mutants chongmague and chobi. In chongmague embryos the notochord fails to develop, and the notochord cells instead adopt a mesenchyme-like fate. The failure of notochord development in chongmague embryos results in a severe truncation of tail, although development of the tail muscles and caudal nerve tracts appears largely normal. Chobi embryos also have a truncation of the tail stemming from a disruption of the notochord. However, in chobi embryos the early development of the notochord appears normal and defects occur later as the notochord attempts to extend and direct elongation of the tail. We find in chobi tailbud embryos that the notochord is often bent, with cells clumped together, rather than extended as a column. These results provide new information on the function and development of the ascidian notochord. In addition, the results demonstrate how the unique features of ascidians can be used in genetic analysis of morphogenesis.  相似文献   

19.
20.
Both myeloperoxidase (MPO) and lactoperoxidase (LPO) contain high affinity bound calcium, which has been suggested to play a structural role. Asp-96 in MPO, a residue next to the histidine distal from the heme prosthetic group, has been assigned to the calcium-binding site of the enzyme by X-ray crystallography. Multiple sequence alignment of known animal peroxidases has revealed that the calcium-binding site is highly conserved. In this study, we replaced Asp-96 in MPO and the counterpart Asp-227 in LPO both with Ala by site-directed mutagenesis. The level of peroxidase activity in insect cells infected with recombinant baculoviruses and their culture supernatants was reduced to virtually zero as a result of these mutations. Immunoblotting revealed that these mutant peroxidases were expressed in the cells but not secreted as effectively as the wild-type enzymes. Our findings suggest that a functional calcium-binding site is essential for the biosynthesis of active animal peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号