首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Under the situ terraced field experiments, effects of artificial UV-B radiation enhancement (0, 2.5, 5.0, 7.5 kJ m?2) on spatial situation and surface structure of leaves and responses index of two local cultivars rice (Oryza sativa L.)—Yuelianggu and Baijiaolaojin in Yuanyang County, China in shooting stage were studied. The results showed that: (1) due to the enhanced UV-B radiation, leaf apex–base distance, leaf pedestal height, leaf rolling degree and wax content in leaves increased, while leaf apex–stem distance, distance between leaves and leaf angle decreased. The response index of growth was positive when UV-B levels were 2.5 and 5.0 kJ m?2, which showed some adaptation. (2) The enhanced UV-B radiation resulted in smaller stomata with higher density and more papilla for both rice cultivars. (3) The enhanced UV-B radiation also leaded to larger silica cells and significantly increases the amount of papilla, spike and epidermal hair for both rice cultivars. (4) Yuelianggu cultivar showed an excellent adaptation on the aspect of spatial situation with UV-B radiation of 2.5 and 5.0 kJ m?2, while Baijiaolaojin exhibited better adaptation respecting the surface structure of leaves when UV-B was 2.5 kJ m?2. By changing spatial situation of leaves, structure and density of stomata, and non-stomatal structures (wax layer, silica cell, cork cell, papilla, spike and epidermal hair), two self-retention rice cultivars could adapt to the increased UV-B radiation. On the aspect of the response index, Baijiaolaojin showed better adaptation than Yuelianggu did when the UV-B was 2.5 kJ m?2.  相似文献   

3.
Abstract

A step by step protocol for resistant calli selection via a tissue culture technique under stress of Pyricularia oryzae culture filtrates was followed. Rice embryos dissected apart from the endosperm of susceptible rice seeds (Giza 176 and Riho) to P. oryzae produced embryonic calli on media containing various growth regulators of 2,4-D at concentrations of 0, 1, 1.5 and 2 mg/L and/or benzyl amino purine (BAP) at 0, 0.5, 1 and 1.5 mg/L when incubated under complete dark conditions for three weeks. Embryonic explants only produced shoots on media containing BAP. Selection of resistant calli was carried out in vitro under the challenging stress of increasing concentration of the pathogen P. oryzae culture filtrate (CF) from “0” up to 100%. The selection protocol has two directions. The first is step-by-step selection from lower to higher selective (CF) concentrations. The second is the exchangeable continuous cycles with and without the same selective (CF) concentration until the end of the selection regime to avoid calli adaptation to (CF). The regenerated calli to plantlets occurred under (CF) stress showed resistance and susceptibility when exposed to the pathogen infection under greenhouse conditions. The results reveal that the resistance in regenerated rice plantlets to P. oryzae pathogen segregated as 1 resistant: 2 moderate resistant: 1 susceptible giving the predication that the resistance in rice to P. oryzae may be controlled by one pair of genes. The in vitro selective regime via tissue cultures is advisable for the selection of novel disease resistant plants because of its time saving, space, money, it is easily applied and has a bio-safe approach.  相似文献   

4.
To understand the suppression mechanisms against disease resistance in rice, we took advantage of the fact that suspension cultured cells exhibit many of the defence responses that are characteristic of intact tissues. In this study we constitutively measured the Rhizoctonia solani and Sarocladium oryzae toxins, induced and suppressed levels of phenylalanine ammonia lyase, peroxidase, superoxide dismutase, phenols, catalase, β-1,3-glucanase and chitinase in rice suspension cultured cells. The addition of Rhizoctonia solani and Sarocladium oryzae toxins separately in suspension cultured cells shows the suppression of defence enzymes and compounds at 24 h and 48 h respectively except SOD. The rice cultivar IR50 delays the disease suppression effect when compared to the other cultivars viz., Pusa Basmati and Co 43. The PR proteins (namely β-1,3-glucanase and chitinase) activities in rice suspension cultured cells were reduced during 48 h and 72 h after the addition of Rhizoctonia solani toxin, whereas the activities were suppressed only after 72 h when inoculated with Sarocladium oryzae toxin. Selective suppression of these defence enzymes and compounds by Rhizoctonia solani and Sarocladium oryzae toxin shows that toxins play a major role during pathogenesis in rice cells.  相似文献   

5.
Prunella vulgaris plants (full-bloom stage) were subjected to short-term (15 days) UV-B radiation in a growth chamber. UV-B radiation was effective at enhancing morphological and biomass characteristics and decreasing chlorophyll contents of P. vulgaris. Treatment of P. vulgaris with artificial UV-B radiation significantly increased peroxidase (POD), superoxide dismutase (SOD) and glutathione (GSH) activities compared to the control treatment. UV-B radiation significantly increased the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and proline in leaves of P. vulgaris compared to those of control plants. In addition, the contents of total flavonoids, rosmarinic acid, caffeic acid and hyperoside significantly increased under UV-B radiation. The total phenolic levels also increased under UV-B treatment. These results demonstrated that short-term UV-B radiation can enhance production of secondary metabolites in P. vulgaris, resulting in increased spica yield compared to that of control plants.  相似文献   

6.
7.
8.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up‐regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)‐limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)‐limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)‐limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.  相似文献   

9.
Rice blast, caused by Magnaporthe oryzae (synonym: Pyricularia oryzae), severely reduces rice production and grain quality. The molecular mechanism of rice resistance to M. oryzae is not fully understood. In this study, we identified a chaperone DnaJ protein, OsDjA6, which is involved in basal resistance to M. oryzae in rice. The OsDjA6 protein is distributed in the entire rice cell. The expression of OsDjA6 is significantly induced in rice after infection with a compatible isolate. Silencing of OsDjA6 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after flg22 and chitin treatments. In addition, the expression levels of WRKY45, NPR1 and PR5 are increased in OsDjA6 RNAi plants, indicating that OsDjA6 may mediate resistance by affecting the salicylic acid pathway. Finally, we found that OsDjA6 interacts directly with the E3 ligase OsZFP1 in vitro and in vivo. These results suggest that the DnaJ protein OsDjA6 negatively regulates rice innate immunity, probably via the ubiquitination proteasome degradation pathway.  相似文献   

10.
11.
12.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

13.
Use of BTH to evaluate the disease severity and induction of systemic resistance in rice to bacterial blight caused by Xanthomonas oryzae pv. oryzae is investigated. A new batch of 25 isolates of Xanthomonas oryzae pv. oryzae was obtained from infected rice lead tissues collected from Pattambi, Kerala, south India. Their identification was confirmed by the plant inoculation test on to IR24 rice plants which produced characteristic bacterial blight lesions. Among the 25 of X.o. pv. oryzae, four of the isolates were also virulent to IRBB21 rice plants (a near isogenic line of IR24) which carry the Xa-21 gene for BB resistance. The results confirm that there are pathogen strains in India which can overcome Xa-21. Development of BB lesions developed in IR24 (BB susceptible) plants after they were treated with BTH applications either as seed treatment or as foliar spray at 0.1, 0.5, 0.1 and 2.0 mM concentrations showed that even at 2.0 mM concentrations, IR24 plants were still susceptible to the pathogen. There was very little or marginal effect of BTH on the induction of resistance to BB in IR24 rice plants. When the same concentrations of BTH were applied to IRBB21 (Xa-21) rice plants, they showed pronounced triggering of systemic resistance to BB pathogen even at 0.1 mM concentration of BTH applied either as seed treatment or as foliar spry. Disease severity index was reduced to 5 (against a score of 9 in untreated) and there was 85–86% reduction in BB incidence in plants that received 0.1 mM BTH. These results provide evidence that BTH-induced systemic resistance complements the R-gene resistance in IRBB21 plants but not in IR24 rice plants.  相似文献   

14.
Plant fungal pathogens change their cell wall components during the infection process to avoid degradation by host lytic enzymes, and conversion of the cell wall chitin to chitosan is likely to be one infection strategy of pathogens. Thus, introduction of chitosan-degradation activity into plants is expected to improve fungal disease resistance. Chitosanase has been found in bacteria and fungi, but not in higher plants. Here, we demonstrate that chitosanase, Cho1, from Bacillus circulans MH-K1 has antifungal activity against the rice blast fungus Magnaporthe oryzae. Introduction of the cho1 gene conferred chitosanase activity to rice cells. Transgenic rice plants expressing Cho1 designed to be localized in the apoplast showed increased resistance to M. oryzae accompanied by increased generation of hydrogen peroxide in the infected epidermal cells. These results strongly suggest that chitosan exists in the enzyme-accessible surface of M. oryzae during the infection process and that the enhancement of disease resistance is attributable to the antifungal activity of the secreted Cho1 and to increased elicitation of the host defense response.  相似文献   

15.
Chitin is a component of fungal cell walls, and its fragments act as elicitors in many plants. The plasma membrane glycoprotein CEBiP, which possesses LysM domains, is a receptor for the chitin elicitor (CE) in rice. Here, we report that the perception of CE by CEBiP contributes to disease resistance against the rice blast fungus, Magnaporthe oryzae, and that enhanced responses to CE by engineering CEBiP increase disease tolerance. Knockdown of CEBiP expression allowed increased spread of the infection hyphae. To enhance defense responses to CE, we constructed chimeric genes composed of CEBiP and Xa21, which mediate resistance to rice bacterial leaf blight. The expression of either CRXa1 or CRXa3, each of which contains the whole extracellular portion of CEBiP, the whole intracellular domain of XA21, and the transmembrane domain from either CEBiP or XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after treatment with CE. Rice plants expressing the chimeric receptor exhibited necrotic lesions in response to CE and became more resistant to M. oryzae. Deletion of the first LysM domain in CRXA1 abolished these cellular responses. These results suggest that CEs are produced and recognized through the LysM domain of CEBiP during the interaction between rice and M. oryzae and imply that engineering pattern recognition receptors represents a new strategy for crop protection against fungal diseases.  相似文献   

16.
Autophagy vitalizes the pathogenicity of pathogenic fungi   总被引:1,自引:0,他引:1  
《Autophagy》2013,9(10):1415-1425
Plant pathogenic fungi utilize a series of complex infection structures, in particular the appressorium, to gain entry to and colonize plant tissue. As a consequence of the accumulation of huge quantities of glycerol in the cell the appressorium generates immense intracellular turgor pressure allowing the penetration peg of the appressorium to penetrate the leaf cuticle. Autophagic processes are ubiquitous in eukaryotic cells and facilitate the bulk degradation of macromolecules and organelles. The study of autophagic processes has been extended from the model yeast Saccharomyces cerevisiae to pathogenic fungi such as the rice blast fungus Magnaporthe oryzae. Significantly, null mutants for the expression of M. oryzae autophagy gene homologs lose their pathogenicity for infection of host plants. Clarification of the functions and network of interactions between the proteins expressed by M. oryzae autophagy genes will lead to a better understanding of the role of autophagy in fungal pathogenesis and help in the development of new strategies for disease control.  相似文献   

17.
Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice worldwide. We aimed to develop an integrated approach for convenient collection, quantification and characterisation of M. oryzae spores (airborne inoculum) in the field. We developed an easy‐to‐use cyclone‐based spore trap (the AirSampler) and a standard procedure for handling a small amount of airborne spores. Using a specific primer pair or a probe designed for the single‐copy gene mif23, SYBR Green and TaqMan assays could quantify 10 and 4 copy numbers, respectively, of M. oryzae DNA. During 2012 and 2013, the AirSampler and SYBR Green quantitative real‐time polymerase chain reaction were used to monitor temporal dynamics of M. oryzae spores in nursery fields of rice showing symptoms of blast disease. During four cropping seasons, the new techniques could detect M. oryzae spores before the appearance of rice blast symptoms. The amount of spores was low in the early season, then increased, with high fluctuations during the mid‐season and decreased to low levels at the heading stage in the late season. To improve the handling and storage of spore samples, we tested the effect of different treatments on the preservation of spore DNA. DNA loss was reduced with samples protected from ultraviolet B radiation, suspended in CTAB buffer, kept at room temperature or 4°C and used for DNA extraction in 2 weeks. Finally, we demonstrated that the high resolution melting analysis could be used for rapid determination of A, D, A + D and C alleles of the avirulence gene pex31 (Avr‐Pik/kp/km) in M. oryzae.  相似文献   

18.
Because molecular oxygen functions as the final acceptor of electrons during aerobic respiration and a substrate for diverse enzymatic reactions, eukaryotes employ various mechanisms to maintain cellular homeostasis under varying oxygen concentration. Human fungal pathogens change the expression of genes involved in virulence and oxygen-required metabolisms such as ergosterol (ERG) synthesis when they encounter oxygen limitation (hypoxia) during infection. The oxygen level in plant tissues also fluctuates, potentially creating hypoxic stress to pathogens during infection. However, little is known about how in planta oxygen dynamics impact pathogenesis. In this study, we investigated oxygen dynamics in rice during infection by Magnaporthe oryzae via two approaches. First, rice leaves infected by M. oryzae were noninvasively probed using a microscopic oxygen sensor. Second, an immunofluorescence assay based on a chemical probe, pimonidazole, was used. Both methods showed that oxygen concentration in rice decreased after fungal penetration. We also functionally characterized five hypoxia-responsive genes participating in ERG biosynthesis for their role in pathogenesis. Resulting insights and tools will help study the nature of in planta oxygen dynamics in other pathosystems.  相似文献   

19.
Heme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF‐Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding β‐glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice. The transgenic lines of OsHAP2Ein::GUS with the intron showed high GUS activity in the wounds and surrounding tissues. When treated by salicylic acid (SA), isonicotinic acid (INA), abscisic acid (ABA) and hydrogen peroxide (H2O2), the lines showed GUS activity exclusively in vascular tissues and mesophyll cells. This activity was enhanced after inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. The OsHAP2E expression level was also induced after inoculation of rice with M. oryzae and X. oryzae pv. oryzae and after treatment with SA, INA, ABA and H2O2, respectively. We further produced transgenic rice overexpressing OsHAP2E. These lines conferred resistance to M. oryzae or X. oryzae pv. oryzae and to salinity and drought. Furthermore, they showed a higher photosynthetic rate and an increased number of tillers. Microarray analysis showed up‐regulation of defence‐related genes. These results suggest that this gene could contribute to conferring biotic and abiotic resistances and increasing photosynthesis and tiller numbers.  相似文献   

20.
Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX‐mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re‐sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号