首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植食性昆虫取食会给植物造成机械损伤并激活植物的防御反应,而与有益微生物共生是否可以增强植物对机械损伤的响应对植物抗虫有重要意义.本研究在番茄根系被丛枝菌根真菌摩西管柄囊霉侵染后,研究机械损伤对番茄防御反应的影响.结果表明: 预先接种菌根真菌的番茄叶片受到机械损伤处理(FD)后,叶片苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、多酚氧化酶(PPO)和过氧化氢酶(CAT)活性,以及叶片和根系苯丙氨酸解氨酶基因(PAL)和β-1,3-葡聚糖酶基因(PR2)的转录水平均显著高于只进行机械损伤的处理(D)、只接种摩西管柄囊霉的处理(F),以及既未接种菌根菌也未进行机械损伤的健康番茄植株(CK).虽然D和 F处理也可诱导部分酶活性及基因转录水平升高,但FD处理诱导的防御反应更迅速和强烈.表明丛枝菌根真菌侵染可以警备(prime)番茄对机械损伤做出更快速和强烈的响应.  相似文献   

2.
T Nishiuchi  T Hamada  H Kodama    K Iba 《The Plant cell》1997,9(10):1701-1712
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids in membrane lipids. The mRNA levels of the Arabidopsis FAD7 gene in rosette leaves rose rapidly after local wounding treatments. Wounding also induced the expression of the FAD7 gene in roots. To study wound-responsive expression of the FAD7 gene in further detail, we analyzed transgenic tobacco plants carrying the -825 Arabidopsis FAD7 promoter-beta-glucuronidase fusion gene. In unwounded transformants, FAD7 promoter activity was restricted to the tissues whose cells contained chloroplasts. Activation of the FAD7 promoter by local wounding treatments was more substantial in stems (29-fold) and roots (10-fold) of transgenic plants than it was in leaves (approximately two-fold). Significant induction by wounding was observed in the overall tissues of stems and included trichomes, the epidermis, cortex, vascular system, and the pith of the parenchyma. Strong promoter activity was found preferentially in the vascular tissues of wounded roots. These results indicate that wounding changes the spatial expression pattern of the FAD7 gene. Inhibitors of the octadecanoid pathway, salicylic acid and n-propyl gallate, strongly suppressed the wound activation of the FAD7 promoter in roots but not in leaves or stems. In unwounded plants, exogenously applied methyl jasmonate activated the FAD7 promoter in roots, whereas it repressed FAD7 promoter activity in leaves. Taken together, wound-responsive expression of the FAD7 gene in roots is thought to be mediated via the octadecanoid pathway, whereas in leaves, jasmonate-independent wound signals may induce the activation of the FAD7 gene. These observations indicate that wound-responsive expression of the FAD7 gene in aerial and subterranean parts of plants is brought about by way of different signal transduction pathways.  相似文献   

3.
Glutathione and phytochelatin contents in tomato plants exposed to cadmium   总被引:1,自引:0,他引:1  
The effect of cadmium on growth and contents of glutathione (GSH) and phytochelatins (PCs) were investigated in roots and leaves of tomato plants (Lycopersicon esculentum Mill. cv. 63/5 F1). The accumulation of Cd increased with external Cd concentrations and was considerably higher in roots than in leaves. Dry mass production decreased under Cd treatment especially in leaves. In both roots and leaves, exposure to Cd caused an appreciable decline in GSH contents and increase in PCs synthesis proportional to Cd concentrations in the growth medium. At the same Cd concentration, PCs production was higher in roots than in leaves. The implication of glutathione in PC synthesis was strongly suggested by the use of buthionine sulfoximine (BSO). The major fraction of Cd accumulated by tomato roots was in the form of a Cd-PCs complex.  相似文献   

4.
In response to Cd stress, higher plants utilise a number of defence systems, such as retention in cell walls, binding by organic molecules in the cytosol and sequestration in the vacuole. White lupin is a Cd-resistant legume that is of interest for phytoremediation of acidified and Cd-contaminated soils. The aim of this research was to evaluate the contributions of various mechanisms of Cd detoxification used by this species, focusing on cell-wall retention and binding by thiol-rich compounds. Retention of Cd by the cell wall of white lupin was well described by a Langmuir isotherm model. The percentage of total Cd adsorbed by the cell wall ranged from 29 to 47% in leaves, from 38 to 51% in stems and from 26 to 42% in roots depending on the Cd supply. Cadmium induced the synthesis of high levels of phytochelatins (PCs) in lupin plants, mainly in roots, with PC3 being the major PC. The amount of Cd complexed by thiols accounted for approximately 20% of the total Cd in leaves, 40% in stems and 20% in roots. Therefore, cell-wall retention could account for more than twice the amount of Cd complexed by PCs in leaves and roots. In stems, both mechanisms contributed equally to Cd detoxification. These studies indicate that white lupin plants use cell-wall binding and, secondarily, the production of PCs, as effective mechanisms of Cd detoxification.  相似文献   

5.
Brassinolide (BL) alleviates salt injury in cotton seedlings; however, little is known about the molecular mechanisms of this response. In this study, digital gene expression analysis was performed to better understand the regulatory pathways of BL in NaCl-stressed cotton (Gossypium hirsutum L.). Compared with control plants (CK), a total of 1 162 and 7 659 differentially expressed genes (DEGs) were detected in the leaves and roots of NaCl-treated plants, respectively. Most of the DEGs in NaCl-treated plants, compared to CK, were regulated by BL. Moreover, expression patterns of DEGs in BL+NaCl treated plants were similar to those in CK plants; however, the responses of DEGs in the leaves and roots of NaCl-treated plants to BL differed. In the roots, BL-regulated DEGs were involved in protein biosynthesis, whereas in the leaves, BL promoted photosynthesis in NaCl-stressed cotton. BL treatment also significantly increased the overall biomass, chlorophyll a + b content in leaves, and the protein content in roots in NaCl-stressed cotton. The downregulation of stress-responsive genes in BL+NaCl-stressed leaves was also found. These results suggest that BL can alleviate NaCl injury in cotton plants.  相似文献   

6.
7.
Ecological stoichiometry has been widely studied in terrestrial ecosystems, but these studies have been limited in terms of symbiotic association between alfalfa and arbuscular mycorrhizal fungi (AMF), especially during regrowth. To evaluate the effect of AMF on the regrowth and C:N:P stoichiometry of alfalfa (Medicago sativa L.) under well-watered and drought conditions, alfalfa plants inoculated with AMF (Rhizophagus irregularis, M), nitrogen-fixing bacteria (Sinorhizobium, R), both nitrogen-fixing bacteria and AMF or no inoculations (CK) were evaluated in a pot experiment under controlled conditions. The biomass and organic carbon (C), nitrogen (N) and phosphorus (P) nutritional status of plant leaves and roots were measured under two water treatments during regrowth. Water deficit reduced the accumulation of dry matter and the concentrations of C and N in leaves and P in roots but increased the concentrations of P in leaves and C and N in roots of alfalfa during regrowth. Compared to CK plants, inoculation significantly improved the regrowth biomass and the concentrations of C, N and P in the leaves and roots and especially increased P levels when the plant were inoculated with AMF. However, this effect of microbes on alfalfa regrowth was dependent on the soil water status. Drought reduced the C:N and C:P in the leaves and the C:N in roots, while N:P and C:P increased in the roots. Inoculation of AMF decreased the C:P and N:P in the leaves and the C:N and C:P in the roots, whereas it increased the C:N under water stress. These results indicate that AMF play a significant role in regrowth and C:N:P ecological stoichiometry after defoliation by influencing C assimilation, N and P uptake and that the responses in the leaves and the roots are opposite.  相似文献   

8.
Herbivore damage by chewing insects activates jasmonate (JA) signalling that can elicit systemic defense responses in rice. Few details are known, however, concerning the mechanism, whereby JA signalling modulates nutrient status in rice in response to herbivory. (15NH4)2SO4 labelling experiments, proteomic surveys, and RT‐qPCR analyses were used to identify the roles of JA signalling in nitrogen (N) uptake and allocation in rice plants. Exogenous applications of methyl jasmonate (MeJA) to rice seedlings led to significantly reduced N uptake in roots and reduced translocation of recently‐absorbed 15N from roots to leaves, likely occurring as a result of down‐regulation of glutamine synthetase cytosolic isozyme 1–2 and ferredoxin–nitrite reductase. Shoot MeJA treatment resulted in a remobilization of endogenous unlabelled 14N from leaves to roots, and root MeJA treatment also increased 14N accumulation in roots but did not affect 14N accumulation in leaves of rice. Additionally, proteomic and RT‐qPCR experiments showed that JA‐mediated plastid disassembly and dehydrogenases GDH2 up‐regulation contribute to N release in leaves to support production of defensive proteins/compounds under N‐limited condition. Collectively, our results indicate that JA signalling mediates large‐scale systemic changes in N uptake and allocation in rice plants.  相似文献   

9.
穗花狐尾藻对铵态氮的生理响应   总被引:2,自引:0,他引:2  
在温室内,以原沉积物(CK)和分别添加0.24%与0.48%氯化铵(SN1和SN2)的沉积物作为底质培养沉水植物,研究了穗花狐尾藻对高浓度铵态氮胁迫的生理响应.结果表明:不同处理沉积物、间隙水和上覆水中铵态氮浓度分别在12.35~870.32 mg·kg-1 、1.09~1036.05 mg·L-1和0.10~24.30 mg·L-1,与CK相比,SN1和SN2处理的穗花狐尾藻生物量、株高和根长分别降低了19.69%和81.16%、15.66%和55.52%与45.72%和67.65%.不同处理根系和叶片SOD活性均表现为SN12211和SN2根系POD和CAT活性则显著高于CK;SN1、SN2叶片和根系丙二醛(MDA)含量分别比CK提高了46.30%、82.75%和19.66%、55.19%.不同浓度铵态氮对穗花狐尾藻均具有毒害作用,而且铵态氮浓度越高,植物生理响应越明显.  相似文献   

10.
A number of environmental cues including short day photoperiod (SD) and low temperature (LT) are known to interact in triggering growth cessation, cold acclimation and other adaptive responses in temperate-zone tree species. Proper timing of these responses is particularly important for survival of trees in the boreal and subarctic regions. Therefore, we used a northern tree species, silver birch ( Betula pendula Roth) as an experimental model to investigate the effect of SD and LT on development of freezing tolerance and on levels of endogenous abscisic acid (ABA) in short-term experiments under controlled conditions. We characterized differences in SD and LT-induced cold acclimation between three different climatic ecotypes from southern, central and northern habitats. The results demonstrated that cold acclimation was rapidly triggered by exposing the plants to SD or LT, and that a combination of the different treatments had an additive effect on freezing tolerance. Freezing tolerance induction was not uniform in the different tissues, the buds and leaves developed freezing tolerance more rapidly than the stem, and the young leaves had a higher freezing tolerance than the old leaves. The ability of the leaves to respond to SD and LT and similarity of the bud and leaf responses indicate that birch leaves provide a rapid and convenient system for studies on molecular mechanisms of cold acclimation. Development of freezing tolerance was dependent on the climatic ecotype, the northern ecotype was clearly more responsive to both SD and LT than the two more southern ecotypes. Development of freezing tolerance induced by SD and LT was accompanied by transient changes in ABA levels. These alterations in ABA levels were ecotype-dependent, the northern ecotype reacting more strongly to the environmental cues.  相似文献   

11.
Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g–1 dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn.  相似文献   

12.
Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plants were grown with roots split between two soil columns. During experiments, water was applied to both columns (well-watered; WW) or one (partial rootzone drying; PRD) column. Irrigation of WW plants aimed to replace transpirational losses every day, while PRD plants received half this amount. Xylem sap was collected by pressurizing detached leaves using a Scholander pressure chamber, and zeatin-type CKs were immunoassayed using specific antibodies raised against zeatin riboside after separating their different forms (free zeatin, its riboside, and nucleotide) by thin-layer chromatography. PRD decreased the whole plant transpiration rate by 22% and leaf water potential by 0.08 MPa, and increased xylem abscisic acid (ABA) concentration 2.5-fold. Although PRD caused no detectable change in [CK(xyl)], it decreased the CK concentration of fully expanded leaves by 46%. That [CK(xyl)] was maintained and not increased while transpiration decreased suggests that loading of CK into the xylem was also decreased as the soil dried. That leaf CK concentration did not decline proportionally with CK delivery suggests that other mechanisms such as CK metabolism influence leaf CK status of PRD plants. The causes and consequences of decreased shoot CK status are discussed.  相似文献   

13.
14.
Abstract 1. Plant growth and chemical defence compounds in four Lotus corniculatus genotypes exposed to factorial combinations of ambient and elevated carbon dioxide, and herbivory by caterpillars of Polyommatus icarus were measured to test the predictions of the carbon/nutrient balance hypothesis.
2. Shoot and root biomass, allocation to shoots versus roots, and carbon-based defence compounds were greater under elevated carbon dioxide. Pupal weight of P. icarus was greater and development time shorter under elevated carbon dioxide.
3. Herbivory decreased shoot growth relative to root growth and production of nitrogen-based defence (cyanide). Young leaves contained more defence compounds than old leaves, and this response depended on carbon dioxide and herbivory treatments (significant interactions).
4. Genotype-specific responses of plants to carbon dioxide and herbivory were found for the production of cyanide. Furthermore, maternal butterfly-specific responses of caterpillars to carbon dioxide were found for development time. This suggests the existence of genetic variation for important defence and life-history traits in plants and herbivores in response to rising carbon dioxide levels.  相似文献   

15.
Phytochelatin (PC) synthesis is considered necessary for Cd tolerance in non‐resistant plants, but roles for PCs in hyper‐accumulating species are currently unknown. In the present study, the relationship between PC synthesis and Cd accumulation was investigated in the Cd hyperaccumulator Sedum alfredii Hance. PCs were most abundant in leaves followed by stems, but hardly detected by the reversed‐phase high‐performance liquid chromatography (HPLC) in roots. Both PC synthesis and Cd accumulation were time‐dependent and a linear correlation between the two was established with about 1:15 PCs : Cd stoichiometry in leaves. PCs were found in the elution fractions, which were responsible for Cd peaks in the anion exchange chromatograph assay. About 5% of the total Cd was detected in these elution fractions as PCs were found. Most Cd was observed in the cell wall and intercellular space of leaf vascular cells. These results suggest that PCs do not detoxify Cd in roots of S. alfredii. However, like in non‐resistant plants, PCs might act as the major intracellular Cd detoxification mechanism in shoots of S. alfredii.  相似文献   

16.
Enhancing phytoremediative ability of Pisum sativum by EDTA application   总被引:5,自引:0,他引:5  
The aim of our research was to demonstrate how the presence of EDTA affects resistance of pea plants to Pb and Pb-EDTA presence, and to show the effectivity of lead ions accumulation and translocation. It was determined that EDTA not only increased the amount of Pb taken up by plants but also Pb ion transport through the xylem and metal translocation from roots to stems and leaves. It can be seen in the presented research results that addition of the chelator with Pb limited metal phytotoxicity. We also demonstrated a significant effect of EDTA not only on Pb accumulation and metal transport to the aboveground parts but also on the profile and amount of thiol compounds: glutathione (GSH), homoglutathione (hGSH) or phytochelatins (PCs), synthesized by the plants. We observed a significant effect of the synthetic chelator on increasing the level of Pb accumulation in roots of plants treated with Pb including EDTA (0.5 and 1 mM). Pisum sativum plants treated only with 1 mM Pb(NO3)2 accumulated over 50 mg Pb x g(-1) dry wt during 4 days of cultivation. Whereas in roots of pea plants exposed to Pb+0.5 mM EDTA 35% more Pb was observed. When 1 mM EDTA was applied roots of pea accumulated over 67% more metal. The presence of EDTA also increased metal uptake and transport to the aboveground parts. In pea plants treated only with 1 mM lead nitrate less than 3 mg Pb x g(-1) dry wt was transported, whereas in P. sativum treated with Pb-EDTA doubled amount of Pb was observed in stems and leaves.  相似文献   

17.
The effects of Cu contamination on RumexK-1 were studied using a pot trial. The results showed that the dry weight of leaves and roots did not change significantly under Cu stress when compared with CK (0 mg kg?1 Cu). Additionally, there was no difference in the amounts of chlorophylla, chlorophyllb, chlorophyll (a+b), and the chlorophylla/b ratio between the CK and Cu treatments. The Cu accumulated in leaves and roots, particularly in the roots, with more Cu accumulating in the plants at higher Cu concentrations in the soil. The proline and soluble protein contents in the leaves were more sensitive to Cu contamination than in the roots. Finally, Cu contamination significantly inhibited the acid phosphatase, alkaline phosphatase, and peroxidase activities in the leaves. These results indicate that RumexK-1 is a plant that can accumulate Cu, exhibits some different metabolic mechanisms under Cu stress, and may be suitable for the phytoremediation of Cu contaminated soils.  相似文献   

18.
19.
In this study, we compare some antioxidative responses of leaves and roots associated to growth reduction in cowpea plants (Vigna unguiculata) during short-term salt stress and recovery. The salt treatment was imposed (200 mM NaCl) for six consecutive days and the salt withdrawal after 3 d. The salt treatment caused an almost complete cessation in the relative growth rate of both leaves and roots. Although NaCl withdrawal has induced an intense reduction in the Na(+) content from the leaves and roots, the growth recovery was slight, after 3 d. The leaf lipid peroxidation was increased in salt-stressed plants and slightly reduced in recovered plants after 3 d. Surprisingly, in the salt-stressed roots it decreased markedly after 3 d treatment and in the pre-stressed/recovered roots it was restored to levels near to the control. In leaves, catalase (CAT) activity showed a rapid and prominent decrease after 1 d of NaCl treatment and salt withdrawal had no effect on its recovery. In contrast, the root CAT activity was not changed by effects of both NaCl and salt withdrawal, over time interval. Leaf superoxide dismutase (SOD) activity did not change in all treatments, whereas in roots it significantly decreased after 3 d of salt treatment and recovered after NaCl withdrawal. Contrasting to the other enzymes, the guaiacol-peroxidase activity increased in leaves and roots, reaching almost 200% of control values and it significantly decreased in both organs from the pre-stressed/recovered plants. In conclusion, cowpea roots and leaves present distinct mechanisms of response to lipid peroxidation and CAT and SOD activities during salt stress and recovery. However, these responses and/or the oxidative damages caused by reactive oxygen species were not related with the growth reduction.  相似文献   

20.
The impact of water deficit progression on cytokinin (CK), auxin and abscisic acid (ABA) levels was followed in upper, middle and lower leaves and roots of Nicotiana tabacum L. cv. Wisconsin 38 plants [wild type (WT)]. ABA content was strongly increased during drought stress, especially in upper leaves. In plants with a uniformly elevated total CK content, expressing constitutively the trans -zeatin O-glucosyltransferase gene ( 35S::ZOG1 ), a delay in the increase of ABA was observed; later on, ABA levels were comparable with those of WT.
As drought progressed, the bioactive CK content in leaves gradually decreased, being maintained longer in the upper leaves of all tested genotypes. Under severe stress (11 d dehydration), a large stimulation of cytokinin oxidase/dehydrogenase (CKX) activity was monitored in lower leaves, which correlated well with the decrease in bioactive CK levels. This suggests that a gradient of bioactive CKs in favour of upper leaves is established during drought stress, which might be beneficial for the preferential protection of these leaves.
During drought, significant accumulation of CKs occurred in roots, partially because of decreased CKX activity. Simultaneously, auxin increased in roots and lower leaves. This indicates that both CKs and auxin play a role in root response to severe drought, which involves the stimulation of primary root growth and branching inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号