首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of effects on embryogenesis of the putative phytohormone jasmonic acid (JA), and its methyl ester (MeJA), were investigated in two oilseed plants, repeseed (Brassica napus) and flax (Linum usitatissimum). Results from treatments with JA and MeJA were compared with those of a known effector of several aspects of embryogenesis, abscisic acid (ABA). Jasmonic acid was identified by gas chromatography-mass spectrometry as a naturally occurring substance in both plant species during embryo development. Both JA and MeJA can prevent precocious germination of B. napus microspore embryos and of cultured zygotic embryos of both species at an exogenous concentration of >1 micromolar. This dose-response was comparable with results obtained with ABA. Inhibitory effects were also observed on seed germination with all three growth regulators in rapeseed and flax. A number of molecular aspects of embryogenesis were also investigated. Expression of the B. napus storage protein genes (napin and cruciferin) was induced in both microspore embryos and zygotic embryos by the addition of 10 micromolar JA. The level of napin and cruciferin mRNA detected was similar to that observed when 10 micromolar ABA was applied to these embryos. For MeJA only slight increases in napin or cruciferin mRNA were observed at concentrations of 30 micromolar. Several oilbody-associated proteins were found to accumulate when the embryos were incubated with either JA or ABA in both species. The MeJA had little effect on oilbody protein synthesis. The implications of JA acting as a natural regulator of gene expression in zygotic embryogenesis are discussed.  相似文献   

2.
The homozygous T-DNA mutant of the PP2CA2 gene in Arabidopsis thaliana was identified at DNA and RNA levels. The semi-quantitative RT-PCR analysis showed expression of PP2CA2 was induced by NaCl and ABA. When grown in presence of increasing concentration of exogenous ABA the pp2ca2 mutant showed a significant loss of ABA sensitivity in terms of seed germination, efficiency of post-germination growth and root growth. In presence of all ABA and NaCl concentrations tested the germination percentage of wild-type seeds was lower than that of mutant ppca2 seeds. Furthermore, in the presence of exogenous ABA, the pp2ca2 seeds showed higher germination percentages than wild-type at different stages of development and the pp2ca2 seedlings showed a reduced inhibition of root growth compared with wild-type plants. The above results indicated that the pp2ca2 was an ABA-hyposensitive mutant.  相似文献   

3.
Ca2+ is believed to be a critical second messenger in ABA signal transduction. Ca2+-dependent protein kinases (CDPKs) are the best characterized Ca2+ sensors in plants. Recently, we identified an Arabidopsis CDPK member CPK12 as a negative regulator of ABA signaling in seed germination and post-germination growth, which reveals that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction. We observed that both RNA interference and overexpression of CPK12 gene resulted in ABA-hypersensitive phenotypes in seed germination and post-germination growth, suggesting a high complexity of the CPK12-mediated ABA signaling pathway. CPK12 stimulates a negative ABA-signaling regulator (ABI2) and phosphorylates two positive ABA-signaling regulators (ABF1 and ABF4), which may partly explain the ABA hypersensitivity induced by both downregulation and upregulation of CPK12 expression. Our data indicate that CPK12 appears to function as a balancer in ABA signal transduction in Arabidopsis.  相似文献   

4.
5.
The involvement of ethylene and ethylene receptor Ethylene Response 1 (ETR1) in plant stress responses has been highlighted. However, the physiological processes involved remain unclear. In this study, we have investigated the physiological response of two alleles etr1-1 and etr1-7 mutants during germination and post-germination seedling development in response to salt and osmotic stress. The etr1-1 mutants showed increased sensitivity to osmotic (200 mM or higher mannitol) and salt stress (50 mM NaCl or higher) during germination and seedling development, whereas the etr1-7 mutants displayed enhanced tolerance to the severe stresses (500 mM mannitol or 200 mM NaCl). These results provide physiological and genetic evidence that ethylene receptor ETR1 modulates plant response to abiotic stress. Furthermore, the etr1-1 and etr1-7 mutants showed different responses to exogenous abscisic acid (ABA) inhibition. The etr1-1 mutants were more sensitive to ABA than the wild type during germination, and young seedling development. In sharp contrast, the etr1-7 mutants showed enhanced insensitivity to ABA treatment (>1 μM ABA) in post-germination development including root elongation and greening of cotyledons of the treated seedlings, although the germination was not greatly altered at the tested doses of ABA. The results suggest that ETR1-modulated stress response may mediate ABA. Youning Wang and Tao Wang contributed equally to this report.  相似文献   

6.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.  相似文献   

7.
8.
9.
Arabidopsis thaliana is used as a model system to study triacylglycerol (TAG) accumulation and seed germination in oilseeds. Here, we consider the partitioning of these lipid reserves between embryo and endosperm tissues in the mature seed. The Arabidopsis endosperm accumulates significant quantities of storage lipid, and this is effectively catabolized upon germination. This lipid differs in composition from that in the embryo and has a specific function during germination. Removing the endosperm from the wild-type seeds resulted in a reduction in hypocotyl elongation in the dark, demonstrating a role for endospermic TAG reserves in fueling skotomorphogenesis. Seedlings of two allelic gluconeogenically compromised phosphoenolpyruvate carboxykinase1 (pck1) mutants show a reduction in hypocotyl length in the dark compared with the wild type, but this is not further reduced by removing the endosperm. The short hypocotyl phenotypes were completely reversed by the provision of an exogenous supply of sucrose. The PCK1 gene is expressed in both embryo and endosperm, and the induction of PCK1:beta-glucuronidase at radicle emergence occurs in a robust, wave-like manner around the embryo suggestive of the action of a diffusing signal. Strikingly, the induction of PCK1 promoter reporter constructs and measurements of lipid breakdown demonstrate that whereas lipid mobilization in the embryo is inhibited by abscisic acid (ABA), no effect is seen in the endosperm. This insensitivity of endosperm tissues is not specific to lipid breakdown because hydrolysis of the seed coat cell walls also proceeded in the presence of concentrations of ABA that effectively inhibit radicle emergence. Both processes still required gibberellins, however. These results suggest a model whereby the breakdown of seed carbon reserves is regulated in a tissue-specific manner and shed new light on phytohormonal regulation of the germination process.  相似文献   

10.
The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non‐germinated (NG) seeds treated (+GA3) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1‐aminocyclopropane‐1‐carboylic acid (ACC) decreased after imbibition. In addition, α‐tocopherol and α‐tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).  相似文献   

11.
12.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

13.
Following germination of the castor bean (Ricinus communis L.) seed, levels of phytin decline in both the endosperm and the embryo. However, as seedling growth continues, phytin increase in the latter to a level exceeding that present in the mature dry embryo, while phytin declines concomitantly in the endosperm. It is likely that phosphate mobilized from phytin in the endosperm acts as a substrate for phytin synthesis in the embryo. This is supported by the observation that isolated embryos supplied with phosphate accumulate phytin, particularly in the cotyledons. This increase is enhanced whenmyo-inositol is provided concurrently as a carbon source. Phytin synthesis in the cotyledons of the isolated embryos can occur without the attached axis. Whether initially exposed to exogenous phosphate or not, the isolated cotyledons remain competent in their ability to synthesize phytin for an extended post-germinative period, even though the major reserves are being mobilized at this time.  相似文献   

14.
15.
In a series of experiments the desiccation-sensitive seeds ofQuercus robur were exposed to drying conditions both beforeand after a period of moist storage. Viability loss occurredat higher moisture contents in stored seed than in newly harvestedseeds. Measurements were made at intervals during desiccation.In both stored and unstored seeds viability loss was precededby an increase in the rate of ethane evolution, a commonly usedindicator of lipid peroxidation, and by an increase in electrolyteleakage indicative of membrane damage. Jasmonic acid (JA), itsmethyl ester (MeJA) and ABA were quantified in the same extractsfrom both cotyledonary and axis tissues. The concentration ofall three hormones was higher in the axis than in the cotyledonsof untreated seeds and were within the range of concentrationsquantified elsewhere in seed tissues from other species. Theconcentration of JA, MeJA and ABA progressively increased duringdrying in both cotyledons and axes of whole seeds and in excisedaxes prior to viability loss and then subsequently declined.The concentration of these hormones increased earlier duringdrying in stored seeds in line with their enhanced desiccationsensitivity. Exogenous JA, MeJA and ABA were shown to inhibit germination.However, none of these substances promoted ethylene evolution,which also inhibits germination of Q. robur seeds, or inducedsenescence-like deterioration. The results presented are discussed in relation to the natureof desiccation sensitivity and viability loss in Q. robur seeds. Key words: Quercus robur, seed, desiccation, jasmonates, abscisic acid  相似文献   

16.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.  相似文献   

17.
Abscisic acid (ABA) is involved in regulating diverse biological processes, but its signal transduction genes and roles in hemp seed germination are not well known. Here, the ABA signaling pathway members, PYL, PP2C and SnRK2 gene families, were identified from the hemp reference genome, including 7 CsPYL (pyrab-actin resistance1-like, ABA receptor), 8 CsPP2CA (group A protein phosphatase 2c), and 7 CsSnRK2 (sucrose nonfermenting1-related protein kinase 2). The content of ABA in hemp seeds in germination stage is lower than that in non-germination stage. Exogenous ABA (1 or 10 μM) treatment had a significant regulatory effect on the selected PYL, PP2C, SnRK2 gene families. CsAHG3 and CsHAI1 were most significantly affected by exogenous ABA treatment. Yeast two-hybrid experiments were performed to reveal that CsPYL5, CsSnRK2.2, and CsSnRK2.3 could interact with CsPP2CA7 and demonstrate that this interaction was ABA-independent. Our results indicated that CsPYL5, CsSnRK2.2, CsSnRK2.3 and CsPP2CA7 might involve in the ABA signaling transduction pathway of hemp seeds during the hemp seed germination stages. This study suggested that novel genetic views can be brought into investigation of ABA signaling pathway in hemp seeds and lay the foundation for further exploration of the mechanism of hemp seed germination.  相似文献   

18.
19.
20.
Effects of abscisic acid (ABA) and methyl jasmonate (MeJA) on ethylene production, ACC oxidase (ACO) activity, and content of 1-aminocyclopropane-1-carboxylic acid (ACC) during indirect somatic embryogenesis (SE) of Medicago sativa L. were studied. ABA and MeJA, at 50 μM, were applied during the induction, proliferation, or differentiation phase. ABA decreased ethylene production at the beginning of callus and SE induction and during the differentiation of somatic embryos. The hormone inhibited ACO activity in explants with overgrowing callus during the first two weeks of induction, in embryogenic suspension and also in differentiating embryos. The ACC content was reduced by ABA in callus at the end of SE induction, in embryogenic suspension and in globular embryos, but elevated in cotyledonary embryos. MeJA had no significant effect on ethylene production during M. sativa SE, despite the fact, that it inhibited ACO activity during the first two weeks of induction and in torpedo and cotyledonary embryos. The ACC content was increased by MeJA in 14-day-old callus and embryogenic suspension but was inhibited in globular embryos. Both ABA and MeJA seem to be involved in the regulation of ethylene biosynthesis during distinct phases of SE in M. sativa. It might be considered that exogenous ABA, more probably than MeJA, exerts its inhibitory effect on M. sativa somatic embryo formation by modifying ethylene production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号