首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Successful prediction of the potential allergenicity of a protein may be a key factor in the development of novel, genetically modified foods. The use of the decision tree approach for the prediction of allergenicity is discussed. The methods currently used for identifying allergenic proteins (including use of IgE from patient sera for recognition of proteins) are reviewed. Finally, a specific review of the literature concerning identification of allergens from sesame leads to the conclusion that in the absence of validated animal models, identification of allergenicity (and, consequently, prediction of allergenicity) may be problematic.  相似文献   

2.
Many chemicals are known to be, or have been implicated as, contact allergens, and allergic contact dermatitis is an important occupational and environmental health issue. It is the responsibility of toxicologists to identify those chemicals that have the potential to induce skin sensitisation, and to assess the conditions under which there will exist a risk to human health. This article describes progress that has been made in the development of new approaches to the toxicological evaluation of skin sensitisation, and the benefits to animal welfare that such developments have already produced, and are likely to produce in the future. In this context, the local lymph node assay is described with regard to hazard identification and risk assessment, and possible strategies for the development of in vitro approaches to safety assessment are discussed.  相似文献   

3.
In view of the increasing need to identify non-animal tests able to predict acute skin irritation of chemicals, the European Centre for the Validation of Alternative Methods (ECVAM) focused on the evaluation of appropriate in vitro models. In vitro tests should be capable of discriminating between irritant (I) chemicals (EU risk: R38) and non-irritant (NI) chemicals (EU risk: "no classification"). Since major in vivo skin irritation assays rely on visual scoring, it is still a challenge to correlate in vivo clinical signs with in vitro biochemical measurements. Being particularly suited to test raw materials or chemicals with a wide variety of physical properties, in vitro skin models resembling in vivo human skin were involved in prevalidation processes. Among many other factors, cytotoxicity is known to trigger irritation processes, and can therefore be a first common event for irritants. A refined protocol (protocol 15min-18hours) for the EPISKIN model had been proposed for inclusion in the ECVAM formal validation study. A further improvement on this protocol, mainly based on a post-treatment incubation period of 42 hours (protocol 15min-42hours), the optimised protocol, was applied to a set of 48 chemicals. The sensitivity, specificity and accuracy with the MTT assay-based prediction model (PM) were 85%, 78.6% and 81.3% respectively, with a low rate of false negatives (12%). The improved performance of this optimised protocol was confirmed by a higher robustness (homogeneity of individual responses) and a better discrimination between the I and NI classes. To improve the MTT viability-based PM, the release of a membrane damage marker, adenylate kinase (AK), and of cytokines IL-1alpha and IL-8 were also investigated. Combining these endpoints, a simple two-tiered strategy (TTS) was developed, with the MTT assay as the first, sort-out, stage. This resulted in a clear increase in sensitivity to 95%, and a fall in the false-positive rate (to 4.3%), thus demonstrating its usefulness as a "decision-making" tool. The optimised protocol proved, both by its higher performances and by its robustness, to be a good candidate for the validation process, as well as a potential alternative method for assessing acute skin irritation.  相似文献   

4.
The ECVAM-funded skin irritation validation study (SIVS) was initiated in 2003, with the aim to evaluate whether the EpiDerm, EPISKIN and the SIFT alternative methods were able to reliably identify skin irritant and non-irritant chemicals, and could therefore be candidates for replacing the rabbit Draize test for skin irritation. The primary goal of the study was to evaluate the predictive capacity of the assays with regard to the EU classification system, which employs the risk phrases, "R38", for skin irritants, and "no label" for non-irritants. A secondary objective was the retrospective analysis of the data, to assess whether the in vitro tests would be able to discriminate between strong irritants (category 2), mild irritants (category 3) and non-irritants (no category), as defined by the OECD and United Nations proposal for a Globally Harmonised System (GHS) for the classification and labelling of dermal irritancy. A Chemicals Selection Sub-Committee (CSSC) was appointed to identify test chemicals to be used in the SIVS, for which existing, high quality in vivo data were available, with which to correlate the in vitro measurements. Since chemicals from the European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) database of reference chemicals for skin irritation/skin corrosion had been extensively used in preceding studies, the CSSC made use of novel sources for potential test chemicals. The first source of chemicals screened was the New Chemicals Database (NCD), which is the central archive within the EU notification scheme for 'new' commercial chemicals. Data registered in the NCD originate from standard assays, submitted in compliance with the legislation which regulates the marketing of industrial chemicals, and are subject to quality assurance by the competent authorities of the EU Member States. In addition, to obtain 'existing' chemicals which were readily available from major manufacturing and/or distribution sources, additional databases were surveyed, such as the Toxic Substance Control Act (TSCA) database maintained by the US Environmental Protection Agency (EPA), and the ECETOC database, with the exclusion of the chemicals used in the previous optimisation and prevalidation phases. A total of approximately 3500 chemicals from the NCD and 1600 from the additional databases were screened. Pre-determined selection criteria were applied, primarily to ensure the quality of the in vivo data and the practicability of their use in testing. Overall, the number of chemicals fulfilling the CSSC selection criteria was found to be limited, particularly in the case of GHS category 2 chemicals. However, a total set of 60 chemicals were selected and proposed to the Management Team of the SIVS for independent coding and supply to the participating laboratories. The selected chemicals: i) represented statistically justified sample sizes for distinguishing R38 from no-label chemicals; ii) provided a balanced representation of the three GHS categories, to allow for the post hoc evaluation of the performance of the assays for that classification system; and iii) acknowledged, to a certain degree, the large prevalence known to exist for chemicals which have oedema and erythema scores of 0. The selected chemicals represented a variety of molecular structures, functional chemical groups, and effect and use categories, as well as a wide range of physico-chemical properties. They represented a challenging set of chemicals, relevant to current industrial commerce, with which to validate the alternative methods.  相似文献   

5.
BACKGROUND: Toxicology studies utilizing animals and in vitro cellular or tissue preparations have been used to study the toxic effects and mechanism of action of drugs and chemicals and to determine the effective and safe dose of drugs in humans and the risk of toxicity from chemical exposures. Testing in animals could be improved if animal dosing using the mg/kg basis was abandoned and drugs and chemicals were administered to compare the effects of pharmacokinetically and toxicokinetically equivalent serum levels in the animal model and human. Because alert physicians or epidemiology studies, not animal studies, have discovered most human teratogens and toxicities in children, animal studies play a minor role in discovering teratogens and agents that are deleterious to infants and children. In vitro studies play even a less important role, although they are helpful in describing the cellular or tissue effects of the drugs or chemicals and their mechanism of action. One cannot determine the magnitude of human risks from in vitro studies when they are the only source of toxicology data. METHODS: Toxicology studies on adult animals is carried out by pharmaceutical companies, chemical companies, the Food and Drug Administration (FDA), many laboratories at the National Institutes of Health, and scientific investigators in laboratories throughout the world. Although there is a vast amount of animal toxicology studies carried out on pregnant animals and adult animals, there is a paucity of animal studies utilizing newborn, infant, and juvenile animals. This deficiency is compounded by the fact that there are very few toxicology studies carried out in children. That is one reason why pregnant women and children are referred to as "therapeutic orphans." RESULTS: When animal studies are carried out with newborn and developing animals, the results demonstrate that generalizations are less applicable and less predictable than the toxicology studies in pregnant animals. Although many studies show that infants and developing animals may have difficulty in metabolizing drugs and are more vulnerable to the toxic effects of environmental chemicals, there are exceptions that indicate that infants and developing animals may be less vulnerable and more resilient to some drugs and chemicals. In other words, the generalization indicating that developing animals are always more sensitive to environmental toxicants is not valid. For animal toxicology studies to be useful, animal studies have to utilize modern concepts of pharmacokinetics and toxicokinetics, as well as "mechanism of action" (MOA) studies to determine whether animal data can be utilized for determining human risk. One example is the inability to determine carcinogenic risks in humans for some drugs and chemicals that produce tumors in rodents, When the oncogenesis is the result of peroxisome proliferation, a reaction that is of diminished importance in humans. CONCLUSIONS: Scientists can utilize animal studies to study the toxicokinetic and toxicodynamic aspects of drugs and environmental toxicants. But they have to be carried out with the most modern techniques and interpreted with the highest level of scholarship and objectivity. Threshold exposures, no-adverse-effect level (NOAEL) exposures, and toxic effects can be determined in animals, but have to be interpreted with caution when applying them to the human. Adult problems in growth, endocrine dysfunction, neurobehavioral abnormalities, and oncogenesis may be related to exposures to drugs, chemicals, and physical agents during development and may be fruitful areas for investigation. Maximum permissible exposures have to be based on data, not on generalizations that are applied to all drugs and chemicals. Epidemiology studies are still the best methodology for determining the human risk and the effects of environmental toxicants. Carrying out these focused studies in developing humans will be difficult. Animal studies may be our only alternative for answering many questions with regard to specific postnatal developmental vulnerabilities.  相似文献   

6.
Lipocalins as allergens   总被引:4,自引:0,他引:4  
The term allergy refers to clinical conditions caused by an inappropriate immune response to innocuous proteins in genetically predisposed persons. Allergens of animal origin are responsible for a significant proportion of allergies. In recent years, it has become evident that practically all respiratory animal allergens characterized at the molecular level belong to the lipocalin family of proteins. The current list comprises the major allergens of horse, cow, dog, mouse, rat and cockroach as well as beta-lactoglobulin of cow's milk. While the molecular structure of all these allergens is known, far less information is available regarding their immunological characteristics. Knowing the way the immune system recognizes these allergens and reacts to them might, however, be the key for discovering the common denominator of the allergenicity of lipocalins. The human body contains numerous endogenous lipocalins, and the immune system has to adapt to their presence. We have proposed that under these conditions the immune response against the lipocalin allergens which are structurally related to endogenous lipocalins might be the pathway to allergy in genetically predisposed persons. The same might well apply also to other allergens with homologous endogenous counterparts.  相似文献   

7.
Allergenic reactions to proteins expressed in GM crops has been one of the prominent concerns among biotechnology critics and a concern of regulatory agencies. Soybeans like many plants have intrinsic allergens that present problems for sensitive people. Current GM crops, including soybean, have not been shown to add any additional allergenic risk beyond the intrinsic risks already present. Biotechnology can be used to characterize and eliminate allergens naturally present in crops. Biotechnology has been used to remove a major allergen in soybean demonstrating that genetic modification can be used to reduce allergenicity of food and feed. This provides a model for further use of GM approaches to eliminate allergens.  相似文献   

8.
This review summarizes the available in vitro, in vivo, and informatic methods designed to evaluate different aspects of the capacity of proteins to act as true food allergens. By now, there is no single method to fully assess the potential allergenicity of proteins. The characterization of many food allergens will help to uncover the sequential and structural motifs that determine the behaviour of proteins as food allergens.  相似文献   

9.
A homologous series of eight quaternary ammonium salts (quats) were used as complex cations in a survey of contact hypersensitivity in guinea pigs. Two of the quats tested were found to be strong allergens which was due to stable association with membrane lipids at the surface of epidermal cells. This surface complexation reaction was studied in detail by using a spin-labelled quat of intermediate allergenicity. Electron spin resonance was used to show that stable "ion pairs" are formed between membrane receptor sites and the two strong allergens. Information was obtained on the specificity and kinetics of immunogenic complex formation as well as on the position and orientation of these haptens on epidermal receptor sites in vivo.  相似文献   

10.

Background

Predicting the allergenicity of proteins is challenging. We considered the possibility that the properties of the intact protein that may alter the likelihood of being taken up by antigen presenting cells, may be useful adjuncts in predicting allergens and non-allergens in silico. It has been shown that negatively charged acidic proteins are preferentially processed by dendritic cells.

Methodology

Datasets (aeroallergen, food-allergen and non-allergen) for in-silico study were obtained from public databases. Isoelectric point (pI), net charge, and electrostatic potential (EP) were calculated from the protein sequence (for pI and net charge) or predicted structure (for EP).

Result

Allergens and non allergens differed significantly in pI, net charge, and EP (p<0.0001). Cluster analysis based on these parameters resulted in well defined clusters. Non-allergens were characterized by neutral to basic pI (mean±SE, 7.6±0.16) and positive charge. In contrast allergens were acidic (5.7±0.15) and negatively charged. Surface electrostatic potentials calculated from predicted structures were mostly negative for allergens and mostly positive for non-allergens. The classification accuracy for non-allergens was superior to that for allergens. Thus neutral to basic pI, positive charge, and positive electrostatic potentials characterize non-allergens, and seem rare in allergens (p<0.0001). It may be possible to predict reduced likelihood of allergenicity in such proteins, but this needs to be prospectively validated.  相似文献   

11.

Background  

Safety assessment of genetically modified (GM) food, with regard to allergenic potential of transgene-encoded xenoproteins, typically involves several different methods, evaluation by digestibility being one thereof. However, there are still debates about whether the allergenicity of food allergens is related to their resistance to digestion by the gastric fluid. The disagreements may in part stem from classification of allergens only by their sources, which we believe is inadequate, and the difficulties in achieving identical experimental conditions for studying digestion by simulated gastric fluid (SGF) so that results can be compared. Here, we reclassify allergenic food allergens into alimentary canal-sensitized (ACS) and non-alimentary canal-sensitized (NACS) allergens and use a computational model that simulates gastric fluid digestion to analyze the digestibilities of these two types.  相似文献   

12.
Food allergy is an important health issue. With the increasing interest in novel foods derived from transgenic crop plants, there is a growing need for the development of approaches for the characterization of the allergenic potential of proteins. Although most foreign proteins are immunogenic (able to induce IgG antibody responses), relatively few are important food allergens with the capacity to provoke IgE antibody production. There is currently no validated animal model for the determination of allergenic potential of food proteins. One approach that appears to show some promise is outlined in the current chapter. BALB/c strain mice are immunized by intraperitoneal injection and the potential to cause allergenicity assessed as a function of the induction of specific IgE antibody, measured by homologous passive cutaneous anaphylaxis. Progress to date with this method is summarized, and comparisons are made with other experimental models, including considerations of route of exposure, use of adjuvants and selection of appropriate end points.  相似文献   

13.

Background

Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites.

Methodology/Principal Findings

A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals'' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line.

Conclusion/Significance

This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins.  相似文献   

14.
WebAllergen is a web server that predicts the potential allergenicity of proteins. The query protein will be compared against a set of prebuilt allergenic motifs that have been obtained from 664 known allergen proteins. The query will also be compared with known allergens that do not have detectable allergenic motifs. Moreover, users are allowed to upload their own allergens as alternative training sequences on which a new set of allergenic motifs will be built. The query sequences can also be compared with these motifs. AVAILABILITY: http://weballergen.bii.a-star.edu.sg/  相似文献   

15.
The allergenic components present in whole pollen extract of Xanthium strumarium were isolated by sequential ammonium sulphate precipitation, DEAE Sephadex A50 chromatography and gel filtration. The techniques of RAST inhibition and skin test were utilized to check the allergenicity of fractionated proteins revealing the presence of Xan Ib and Xan VIa as the important allergenic componenets. Xan Ib was found to be devoid of carbohydrate and had a molecular weight of 103 000 daltons. Xan VIa was a glycoprotein of molecular weight 17 000 daltons. The carbohydrate moiety of Xan Vla was found to be associated with allergenicity. The characteristic pattern of whole pollen extract on CIE and TLIEF showed 36 and 21 protein bands, respectively. The use of FPLC in isolation of partially purified allergens from Xanthium is discussed.  相似文献   

16.
Cytokine fingerprinting: characterization of chemical allergens.   总被引:2,自引:0,他引:2  
Chemical allergy is a common and important occupational health issue. Allergic sensitization induced by chemicals may take a variety of forms, including allergic contact dermatitis (skin sensitization) and allergic asthma and rhinitis (sensitization of the respiratory tract). There is a need to identify and characterize chemicals that have the potential to cause such sensitization reactions. Although a number of methods are available for the prospective analysis of skin sensitizing activity, there are currently no widely accepted tests for the identification of chemical respiratory allergens. We here describe a novel approach, cytokine fingerprinting, that has the potential to distinguish between chemical contact and respiratory allergens. The pattern of cytokine production by draining lymph node cells (LNCs) is evaluated following repeated topical exposure of mice to test chemicals. Experience to date reveals that contact allergens stimulate the selective development of type 1 immune responses associated with the secretion by draining LNCs of interferon gamma (IFN-gamma), but little interleukin-4 (IL-4) or interleukin-10 (IL-10). In contrast, chemical respiratory allergens are found to induce the appearance of preferential type 2 immune responses characterized by IL-4 and IL-10 production, but comparatively low levels of IFN-gamma. It is proposed that cytokine fingerprinting may permit the simultaneous identification and characterization of those chemicals that have the potential to cause allergic sensitization.  相似文献   

17.
ECVAM sponsored a formal validation study on three in vitro tests for skin irritation, of which two employ reconstituted human epidermis models (EPISKIN, EpiDerm), and one, the skin integrity function test (SIFT), employs ex vivo mouse skin. The goal of the study was to assess whether the in vitro tests would correctly predict in vivo classifications according to the EU classification scheme, "R38" and "no label" (i.e. non-irritant). 58 chemicals (25 irritants and 33 non-irritants) were tested, having been selected to give broad coverage of physico-chemical properties, and an adequate distribution of irritancy scores derived from in vivo rabbit skin irritation tests. In Phase 1, 20 of these chemicals (9 irritants and 11 non-irritants) were tested with coded identities by a single lead laboratory for each of the methods, to confirm the suitability of the protocol improvements introduced after a prevalidation phase. When cell viability (evaluated by the MTT reduction test) was used as the endpoint, the predictive ability of both EpiDerm and EPISKIN was considered sufficient to justify their progression to Phase 2, while the predictive ability of the SIFT was judged to be inadequate. Since both the reconstituted skin models provided false predictions around the in vivo classification border (a rabbit Draize test score of 2), the release of a cytokine, interleukin-1alpha (IL-1alpha), was also determined. In Phase 2, each human skin model was tested in three laboratories, with 58 chemicals. The main endpoint measured for both EpiDerm and EPISKIN was cell viability. In samples from chemicals which gave MTT assay results above the threshold of 50% viability, IL-1alpha release was also measured, to determine whether the additional endpoint would improve the predictive ability of the tests. For EPISKIN, the sensitivity was 75% and the specificity was 81% (MTT assay only); with the combination of the MTT and IL-1alpha assays, the sensitivity increased to 91%, with a specificity of 79%. For EpiDerm, the sensitivity was 57% and the specificity was 85% (MTT assay only), while the predictive capacity of EpiDerm was not improved by the measurement of IL-1alpha release. Following independent peer review, in April 2007 the ECVAM Scientific Advisory Committee endorsed the scientific validity of the EPISKIN test as a replacement for the rabbit skin irritation method, and of the EpiDerm method for identifying skin irritants as part of a tiered testing strategy. This new alternative approach will probably be the first use of in vitro toxicity testing to replace the Draize rabbit skin irritation test in Europe and internationally, since, in the very near future, new EU and OECD Test Guidelines will be proposed for regulatory acceptance.  相似文献   

18.
Allergic reactions to foods represent a prominent, actual and increasing problem in clinical medicine. Symptoms of food allergy comprise skin reactions (urticaria, angioedema, eczema) respiratory (bronchoconstriction, rhinitis), gastrointestinal (cramping, diarrhea) and cardiovascular symptoms with the maximal manifestation of anaphylactic shock. They can be elicited by minute amounts of allergens. The diagnosis of food allergy is done by history, skin test, in vitro allergy diagnosis and — if necessary — oral provocation tests, if possible placebo-controlled. Avoidance of respective allergens for the allergic patient, however, is often complicated or impossible due to deficits in declaration regulations in many countries. Increasing numbers of cases including fatalities, due to inadvertent intake of food allergens are reported. It is therefore necessary to improve declaration laws and develop methods for allergen detection in foods. Allergens can be detected by serological methods (enzyme immunoassays, in vitro basophil histamine release or in vivo skin test procedures in sensitized individuals). The problem of diagnosis of food allergy is further complicated by cross-reactivity between allergens in foods and aeroallergens (pollen, animal epithelia, latex etc.). Elicitors of pseudo-allergic reactions with similar clinical symptomatology comprise low-molecular-mass chemicals (preservatives, colorings, flavor substances etc.). For some of them (e.g. sulfites) detection assays are available. In some patients classic allergic contact eczema can be elicited systemically after oral intake of low-molecular-mass contact allergens such as nickel sulfate or flavorings such as vanillin in foods. The role of xenobiotic components in foods (e.g. pesticides) is not known at the moment. In order to improve the situation of the food allergic patient, research programs to elucidate the pathophysiology and improve allergen detection strategies have to be implemented together with reinforced declaration regulations on a quantitative basis.  相似文献   

19.
Evidence that chemicals in the environment may cause developmental and reproductive abnormalities in fish and wildlife by disrupting normal endocrine functions has increased concern about potential adverse human health effects from such chemicals. US laws have now been enacted that require the US Environmental Protection Agency (EPA) to develop and validate a screening program to identify chemicals in food and water with potential endocrine-disrupting activity. EPA subsequently proposed an Endocrine Disruptor Screening Program that uses in vitro and in vivo test systems to identify chemicals that may adversely affect humans and ecologically important animal species. However, the endocrine system can be readily modulated by many experimental factors, including diet and the genetic background of the selected animal strain or stock. It is therefore desirable to minimize or avoid factors that cause or contribute to experimental variation in endocrine disruptor research and testing studies. Standard laboratory animal diets contain high and variable levels of phytoestrogens, which can modulate physiologic and behavioral responses similar to both endogenous estrogen as well as exogenous estrogenic chemicals. Other studies have determined that some commonly used outbred mice and rats are less responsive to estrogenic substances than certain inbred mouse and rat strains for various estrogen-sensitive endpoints. It is therefore critical to select appropriate biological models and diets for endocrine disruptor studies that provide optimal sensitivity and specificity to accomplish the research or testing objectives. An introduction is provided to 11 other papers in this issue that review these and other important laboratory animal experimental design considerations in greater detail, and that review laboratory animal and in vitro models currently being used or evaluated for endocrine disruptor research and testing. Selection of appropriate animal models and experimental design parameters for endocrine disruptor research and testing will minimize confounding experimental variables, increase the likelihood of replicable experimental results, and contribute to more reliable and relevant test systems.  相似文献   

20.
Murine models for natural rubber latex allergy assessment   总被引:2,自引:0,他引:2  
Murine models provide a powerful tool in the investigation of latex allergy and the development of intervention strategies. The immune responses to protein allergens of mice and humans are similar but differences related to the roles of IgE and IgG must be recognized. Mice have been shown to mount a dose and time-dependent IgE response to latex proteins following topical, respiratory, and subcutaneous exposures. Methods are available to evaluate cutaneous and respiratory responses to latex challenge in sensitized animals. These models have been used to investigate the role of route of exposure on the development of latex allergy and to provide a means for investigating the contribution of individual proteins to adverse respiratory and dermal responses. These models provide a mechanism for the evaluation of new technologies aimed at reducing the allergenicity of latex products, and for testing for the potential for cross-reactivity to new allergens in previously sensitized individuals. Murine models may also provide a method for testing immunotherapy strategies prior to initiating human trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号