首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
An Arabidopsis thaliana gene encoding phosphoribosylanthranilate transferase is shown to be the gene that is defective in blue fluorescent trp1 mutant plants. This gene, named PAT1, was isolated using an A. thaliana cDNA clone that suppressed an Escherichia coli trpD mutation. The PAT1 coding region is homologous to those for the phosphoribosylanthranilate transferases from many microorganisms. Unlike other genes involved in aromatic amino acid biosynthesis in A. thaliana, PAT1 appears to be a single-copy gene. PAT1 was demonstrated to be the gene that is defective in blue fluorescent trp1 mutants by two methods: genetic complementation in transgenic plants and genetic mapping studies. This is the first report of cloning a plant phosphoribosylanthranilate transferase gene. The PAT1 gene should prove useful as a selectable marker for transformation or a visible reporter of gene expression when used in conjunction with trp1 plants.  相似文献   

4.
5.
The COT1 and ZRC1 genes of Saccharomyces cerevisiae are structurally related dosage-dependent suppressors of metal toxicity. COT1 confers increased tolerance to high levels of cobalt; ZRC1 confers increased tolerance to high levels of zinc. The two genes are not linked and have been mapped; COT1 to chromosome XV and ZRC1 to chromosome XIII. Phenotypes related to metal homeostasis have been examined in strains with varied COT1 and ZRC1 gene doses. Overexpression of COT1 confers tolerance to moderately toxic levels of zinc and ZRC1 confers tolerance to moderately toxic levels of cobalt. Strains that carry null alleles at both loci are viable. The metal-hypersensitive phenotypes of mutations in either gene are largely unaffected by changes in dosage of the other. COT1 and ZRCI function independently in conferring tolerance to their respective metals, yet the uptake of cobalt ions by yeast cells is dependent on the gene dosage of ZRC1 as well as of COT1 Strains that overexpress ZRC1 have increased uptake of cobalt ions, while ZRCI null mutants exhibit decreased cobalt uptake. The defects in cobalt uptake due to mutations at COT1 and ZRC1 are additive, suggesting that the two genes are responsible for the majority of cobalt and zinc uptake in yeast cells. The function of either gene product seems to be more important in metal homeostasis than is the GRR1 gene product, which is also involved in metal metabolism. Mutations in the GRR1 gene have no effect on the cobalt-related phenotypes of strains that have altered gene dosage of either COT1 or ZRC1.  相似文献   

6.
7.
The master erythroid regulator KLF1,plays a pivotal role during erythroid lineage development by regulating the expression of many erythroid genes. Variations in the KLF1 gene are found to be associated with varied erythroid phenotypes. With the aim of determining the role of KLF1 gene variations in HbF induction and their genotype phenotype relationship, in this study, we screened 370 individuals with different hemoglobinopathy condition. Hematological analysis was carried out using automated blood cell counter and Variant II HPLC (Biorad). KLF1 gene mutations were screened using automated DNA sequencing. Expression analysis was carried out using q-RT PCR of KLF1, BCL11A and γ-globin after selective enrichment and culturing of CD 34 +ve cells into an erythroid lineage. Over all 14 KLF1 gene variations were identified, of which six variants were novel. The incidence of KLF1 gene mutations was found to be 8.1%. It was seen that KLF1 mutations contributed in borderline HbA2 levels as 7.6% of our borderline HbA2 cases showed presence of KLF1 variations. It also contributed in induction of HbF levels under stress erythropoietic conditions. Gene expression studies revealed inverse correlation of KLF1, BCL11A (reduced) with γ-globin gene expression (increased) in patients showing KLF1 gene mutations, thus indicating the role of KLF1 gene in regulating the γ-globin gene expression. The identification of genomic variants of the KLF1 may help in determining the functionally active domain of this protein and will facilitate in understanding the wide spectrum of phenotypes generated by these variants.  相似文献   

8.
9.
Hayles J  Aves S  Nurse P 《The EMBO journal》1986,5(12):3373-3379
The gene suc1 encodes a product which suppresses certain temperature sensitive mutants of the cell cycle control gene cdc2 of Schizosaccharomyces pombe. Mutants in the suc1 gene or over-expression of its product leads to delays in mitotic and meiotic nuclear division. Deletion of the suc1 gene is lethal and generates some cells blocked in the cell cycle and others impaired in cellular growth. It is likely that the suc1 gene product binds and forms unstable complexes with the cdc2 protein kinase and with other proteins necessary for the cell cycle and cellular growth. suc1 may have a regulatory role in these processes.  相似文献   

10.
Four streptomycin-resistant isolates of Xanthomonas oryzae pv. oryzae (YNA7-1, YNA10-2, YNA11-2, and YNA12-2) were examined via PCR amplification for the presence of class 1, class 2, and class 3 integrons and aadA1 and aadA2 genes, which confer resistance to streptomycin and spectinomycin. The class 1 integrase gene intI1 and the aminoglycoside adenylyltransferase gene aadA1 were identified in all four resistant isolates but not in 25 sensitive isolates. PCR amplifications showed that 7790-bp, 7162-bp, 7790-bp, and 7240-bp resistance integrons with transposition gene modules (tni module) in 3′ conserved segments existed in YNA7-1, YNA10-2, YNA11-2, and YNA12-2, respectively. Subsequent analysis of sequences indicated that the integrons of YNA7-1 and YNA11-2 carried three gene cassettes in the order |aacA3|arr3|aadA1|. The integron of YNA10-2 carried only |arr3|aadA1| gene cassettes. The integron of YNA12-2 lacked a 550-bp sequence including part of intI1 but it still carried |aacA3|arr3|aadA1| gene cassettes. The analysis of inactive mutants and complementation tests confirmed that the aacA3 gene conferred resistance to tobramycin, kanamycin, gentamicin and netilmicin; the arr3 gene conferred resistance to rifampicin; and the aadA1 gene conferred resistance to streptomycin and spectinomycin. The resistance phenotypes of the four isolates corresponded with their resistance gene cassettes, except that YNA7-1 and YNA12-2 did not show rifampicin resistance. Sequence comparison revealed that no gene cassette array in GenBank was in the same order as in the integrons of the four resistant isolates in this study and the aadA1, which was identical in the four resistant isolates, showed 99% identity with aadA1 sequences in GenBank. The result of a stability test showed that the resistance phenotype, the aadA1 gene, and the intI1 gene were completely stable in YNA7-1 and YNA12-2 but unstable in YNA10-2 and YNA11-2. To our knowledge, this is the first report of resistance integron in a phytopathogenic bacteria.  相似文献   

11.
The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee.  相似文献   

12.
In contrast to model yeasts, gene targeting efficiencies of non-conventional yeasts are usually low, which greatly limits the research and applications of these organisms. In this study, we aimed to enhance the gene targeting efficiency of non-conventional yeasts by improving the fitness of mutant strains, particularly by increasing the genetic redundancy of host cells. To demonstrate this process, OCH1 gene deletion in Pichia pastoris was performed. Extra copies of the OCH1 gene on a helper plasmid were provided for the P. pastoris GS115 strain before the native OCH1 gene in the genomic DNA was knocked out. The redundancy in OCH1 gene significantly eliminated the growth defects of the och1 mutant and increased the deletion efficiency of the OCH1 gene by two orders of magnitude with the same length of homologous flanks. The same strategy was used to delete the KU70 and SGS1 genes. The targeting efficiencies of KU70 and SGS1 were increased by 1- and 23-fold, respectively. Therefore, this study provided an efficient strategy for the deletion of “stubborn” genes in non-conventional yeasts. This study further showed that cellular fitness is potentially an important factor that can limit the efficiency of gene targeting.  相似文献   

13.
14.
类 LSD1 (LSD1-like) 基因家族是一类特殊的 C2C2 型锌指蛋白基因,编码植物特有的转录因子 . 目前已经研究的 2 个成员拟南芥 LSD1 (lesions stimulating disease resistance 1) 和 LOL1 (LSD-One-Like 1) 基因均参与植物细胞程序化死亡 (programmed cell death, PCD) 的调控 . 从水稻 cDNA 文库中克隆到 1 个类 LSD1 基因,命名为 OsLSD1. 该基因长 988 bp ,包含一个 432 bp 的开放阅读框,推导的氨基酸序列 (143 个氨基酸 ) 含有 3 个内部保守的锌指结构域 . DNA 印迹结果表明 OsLSD1 基因在水稻基因组中为单拷贝,且在根、茎和叶中表达 . 借助于生物信息学分析技术,从拟南芥和水稻数据库中各识别出 5 个和 7 个 ( 包括 OsLSD1) 类 LSD1 基因 . 分析了这些类 LSD1 基因的结构,蛋白质结构域组成 . 系统进化分析表明,无论基于编码区的核苷酸或氨基酸序列都可以将这些类 LSD1 基因分为 2 类 . 虽然不存在拟南芥或水稻特有的类 LSD1 蛋白,但有些结构域是水稻所特有的,也有些基因是来源于复制事件 .  相似文献   

15.
16.
L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS), an evolutionarily conserved enzyme-protein, catalyses the first and rate limiting step of inositol biosynthesis. Inositol and its derivatives play important roles in biological kingdom like growth regulation, membrane biogenesis, signal transduction and also acts as an osmolyte or osmoprotectant in abiotic stress tolerance. Here we report the cloning, sequencing and the characterization of the INO1 gene from Xerophyta viscosa (XINO1), a monocotyledonous resurrection plant. Nucleotide sequences of XINO1 show striking homology (70–99%) with a number of INO1 genes from plant sources particularly with the monocots. The gene is functionally identified through genetic complementation using a yeast inositol auxotrophic strain FY250. The gene is expressed in E. coli BL21, recombinant protein purified to homogeneity, biochemically characterized and compared with Oryza INO1 (RINO1) gene product. The XINO1 gene product is catalytically active in a broader range of lower temperature (between 10–40 °C) than the RINO1 gene- product. This is the first report of MIPS gene from any resurrection plant.  相似文献   

17.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号