首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o.  相似文献   

2.
Multiple inositol polyphosphate phosphatase (MIPP) is an enzyme that, in vitro, has the interesting property of degrading higher inositol polyphosphates to the Ca2+ second messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), independently of inositol lipid breakdown. We hypothesized that a truncated cytosolic form of the largely endoplasmic reticulum-confined MIPP (cyt-MIPP) could represent an important new tool in the investigation of Ins(1,4,5)P3-dependent intracellular Ca2+ homeostasis. To optimize our ability to judge the impact of cyt-MIPP on intracellular Ca2+ concentration ([Ca2+]i) we chose a poorly responsive beta-cell line (HIT M2.2.2) with an abnormally low [Ca2+]i. Our results show for the first time in an intact mammalian cell that cyt-MIPP expression leads to a significant enhancement of Ins(1,4,5)P3 concentration. This is achieved without a significant interference from other cyt-MIPP-derived inositol phosphates. Furthermore, the low basal [Ca2+]i of these cells was raised to normal levels (35 to 115 nm) when they expressed cyt-MIPP. Noteworthy is that the normal feeble glucose-induced Ca2+ response of HIT M2.2.2 cells was enhanced dramatically by mechanisms related to this increase in basal [Ca2+]i. These data support the use of cyt-MIPP as an important tool in investigating Ins(1,4,5)P3-dependent Ca2+ homeostasis and suggest a close link between Ins(1,4,5)P3 concentration and basal [Ca2+]i, the latter being an important modulator of Ca2+ signaling in the pancreatic beta-cell.  相似文献   

3.
Plasma membrane Ca2+-ATPase (PMCA) plays a vital role in maintaining cytosolic calcium concentration ([Ca2+]i). Given that many diseases have modified PMCA expression and activity, PMCA is an important potential target for therapeutic treatment. This study demonstrates that the non-toxic, naturally-occurring polyphenol resveratrol (RES) induces increases in [Ca2+]i via PMCA inhibition in primary dermal fibroblasts and MDA-MB-231 breast cancer cells. Our results also illustrate that RES and the fluorescent intracellular calcium indicator Fura-2, are compatible for simultaneous use, in contrast to previous studies, which indicated that RES modulates the Fura-2 fluorescence independent of calcium concentration. Because RES has been identified as a PMCA inhibitor, further studies may be conducted to develop more specific PMCA inhibitors from RES derivatives for potential therapeutic use.  相似文献   

4.
Polyunsaturated free fatty acids (PUFAs) of both w-3 and w-6 series, induce a rapid increase of cytosolic free Ca2+ concentration ([Ca2+]i) in a leukemic T-cell line (JURKAT), measured by the fluorescent indicator fura-2. The early increase in [Ca2+]i was transient, falling to a sustained level which returned to base line after 10-15 min. In Ca2+-free medium, PUFAs still caused an early increase in [Ca2+]i but rapidly returned to basal. Depletion of endoplasmic reticular Ca2+ pool by addition of OKT3 (antibodies to CD3 of the T3-antigen receptor complex) to JURKAT cells (in Ca2+-free medium) abolished the PUFAs-mediated [Ca2+]i increase and vice versa. By using saponin-permeabilized JURKAT cells, the intracellular free Ca2+ released by PUFAs was found to be the non-mitochondrial, ATP-dependent sequestered Ca2+ pool which is sensitive to inositol 1,4,5-trisphosphate. However, PUFAs do not induce any apparent increase in inositol phosphates in JURKAT cells. No Ca2+ influx was detected in JURKAT cells when stimulated with PUFAs. A correlation was observed between both the carbon chain length and the number of double bonds with the ability to mobilize cytosolic free [Ca2+]i in the w-3 PUFAs. These results demonstrate that PUFAs stimulate the release of Ca2+ from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in the endoplasmic reticulum of JURKAT cells via a mechanism independent of inositol lipid hydrolysis.  相似文献   

5.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

6.
The effects of glucose, diazoxide, K+, and tolbutamide on the activity of K+ channels, membrane potential, and cytoplasmic free Ca2+ concentration were investigated in beta-cells from the Uppsala colony of obese hyperglycemic mice. With [K+]e = [K+]i = 146 mM, it was demonstrated that the dominating channel at the resting potential is a K+ channel with a single-channel conductance of about 65 picosiemens and a reversal potential of about +70 mV (pipette potential). This channel is characterized by complex kinetics with openings grouped in bursts. The channel was completely inhibited by 20 mM glucose in intact cells or by intracellularly applied Mg-ATP (1 mM). The number of active channels was markedly reduced already by 5 mM glucose. However, the single channel current of the channels remaining active was unaffected, indicating no major depolarization. To evoke a substantial depolarization of the membrane and thereby action potentials, a total block in channel activity was necessary. This could be achieved either by increasing the concentration of glucose to 20 mM or by combining 5 mM glucose with 100 microM tolbutamide. In both cases, the effect was counteracted by the hyperglycemic sulfonamide diazoxide. The effects on single channel activity were paralleled by changes in membrane potential and cytoplasmic free Ca2+ concentration, also when the latter measurements were performed at room temperature. The transient increase in the number of active channels and the resulting hyperpolarization observed after raising the glucose concentration to 20 mM probably reflected a drop in cytoplasmic ATP concentration. It is suggested that ATP works as a key regulator of the beta-cell membrane potential and thereby the opening of voltage-activated Ca2+ channels.  相似文献   

7.
Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation of the induced neurodegeneration, we have developed standardized protocols, including--a) densitometric measurements of the cellular uptake of propidium iodide (PI), --b) histological staining by Flouro-Jade, --c) lactate dehydrogenase (LDH) release to the culture medium, --d) immunostaining for microtubulin-associated protein 2, and --e) general and specific neuronal and glial cell stains. The results show good correlation between the different markers, and are in accordance with results obtained in vivo. Examples presented in this review will focus on the use of PI uptake to monitor the excitotoxic effects of --a) KA and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection.  相似文献   

8.
We examined the effects of the divalent cations Ca2+ and Mg2+ on inositol phosphate accumulation in bovine parathyroid cells prelabelled with [3H]inositol to determine whether the high extracellular Ca2+ and Mg2+-evoked transients in cytosolic Ca2+ in these cells might result from increases in cellular IP3 levels. In the presence of Li+, both Ca2+ and Mg2+ produced rapid, 2-6-fold increases in IP3 and IP2 and a linear increase in IP of 6-8-fold at 30 min. Smaller (1.5-2-fold) increases in IP2 and IP3 were evident within 7.5-15 s upon exposure to high (3 mM) Ca2+ in the absence of Li+. The relative potencies of Ca2+ and Mg2+ (Ca2+ 3-fold more potent than Mg2+) in elevating inositol phosphates were similar to those for their effects in inhibiting PTH release. Fluoride (5 and 10 mM) also produced similar increases in inositol phosphate accumulation, presumably through activation of phospholipase C by a guanine nucleotide (G) protein-dependent process. Thus, high extracellular Ca2+ and Mg2+-induced spikes in cytosolic Ca2+ in bovine parathyroid cells may be mediated by increases in IP3, perhaps through a receptor-mediated process linked to phospholipase C by a G-protein.  相似文献   

9.
10.
Summary In internodal cells ofLamprothamnium succinctum, turgor regulation in response to hypotonie treatment is inhibited by lowering external Ca2+ concentration ([Ca2+]e) from 3.9 (normal) to 0.01 (low) mM. In order to clarify whether a change in the cytoplasmic free Ca2+ concentration ([Ca2+]c) is involved in turgor regulation, the Ca2+ sensitive protein aequorin was injected into the cytoplasm of internodal cells. A large transient light emission was observed upon hypotonic treatment under normal [Ca2+]e but not under low [Ca2+]e. Thus hypotonic treatment induces a transient increase in [Ca2+]c under normal [Ca2+]e but not under low [Ca2+]e.Abbreviations ASW artificial sea water - i cellular osmotic pressure - [Ca2+]c cytoplasmic free Ca2+ concentration - EDTA ethylenediamine-tetraacetic acid - EGTA ethylenglycol-bis(-aminoethyl ether(N,N-tetraacetic acid - [Ca2+]e external Ca2+ concentration - e external osmotic pressure - GM glass micropipette - GP glass plate - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid - MS microscope stage - OL objective lens - PIPES piperazine-N-N-bis(2-ethanesulfonic acid) - W Weight  相似文献   

11.
We determined the effect of aromatic aminoacid stimulation of the human extracellular Ca2+-sensingreceptor (CaR) on intracellular Ca2+ concentration([Ca2+]i) in single HEK-293 cells. Additionof L-phenylalanine or L-tryptophan (at 5 mM)induced [Ca2+]i oscillations from a restingstate that was quiescent at 1.8 mM extracellular Ca2+concentration ([Ca2+]e). Each[Ca2+]i peak returned to baseline values, andthe average oscillation frequency was ~1 min1 at37°C. Oscillations were not induced or sustained if the[Ca2+]e was reduced to 0.5 mM, even in thecontinued presence of amino acid. Average oscillation frequency inresponse to an increase in [Ca2+]e (from 1.8 to 2.5-5 mM) was much higher (~4 min1) than thatinduced by aromatic amino acids. Oscillations in response to[Ca2+]e were sinusoidal whereas those inducedby amino acids were transient. Thus both amino acids andCa2+, acting through the same CaR, produce oscillatoryincreases in [Ca2+]i, but the resultantoscillation pattern and frequency allow the cell to discriminate whichagonist is bound to the receptor.

  相似文献   

12.
Huh YH  Kim KD  Yoo SH 《Biochemistry》2007,46(49):14032-14043
The nucleus also contains the inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ channels in the nucleoplasm proper independent of the nuclear envelope or the cytoplasm. The nuclear IP3R/Ca2+ channels were shown to be present in small IP3-dependent nucleoplasmic Ca2+ store vesicles, yet no information is available regarding the IP3 sensitivity of nuclear IP3R/Ca2+ channels. Here, we show that nuclear IP3R/Ca2+ channels are 3-4-fold more sensitive to IP3 than cytoplasmic ones in both neuroendocrine PC12 cells and nonneuroendocrine NIH3T3 cells. Given the presence of phosphoinositides and phospholipase C and the importance of IP3-mediated Ca2+ signaling in the nucleus, the high IP3 sensitivity of nuclear IP3R/Ca2+ channels seemed to reflect the physiological needs of the nucleus to finely control the IP3-dependent Ca2+ concentrations. It was further shown that the IP3R/Ca2+ channels of secretory cells are 7-8-fold more sensitive to IP3 than those of nonsecretory cells. This difference appeared to result from the presence of secretory cell marker protein chromogranins (thus secretory granules) in secretory cells; expression of chromogranins in NIH3T3 cells increased the IP3 sensitivity of both nuclear and cytoplasmic IP3R/Ca2+ channels by approximately 4-6-fold. In contrast, suppression of chromogranin A expression in PC12 cells changed the EC50 of IP3 sensitivity for cytoplasmic IP3R/Ca2+ channels from 17 to 47 nM, whereas suppression of chromogranin B expression changed the EC50 of cytoplasmic IP3R/Ca2+ channels from 17 to 102 nM and the nuclear ones from 4.3 to 35 nM. Given that secretion is the major function of secretory cells and is under a tight control of intracellular Ca2+ concentrations, the high IP3 sensitivity appears to reflect the physiological roles of secretory cells.  相似文献   

13.
The sperm-specific phospholipase C-zeta (PLCzeta) elicits fertilization-like Ca2+ oscillations and activation of embryo development when microinjected into mammalian eggs (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development (Camb.) 129, 3533-3544; Cox, L. J., Larman, M. G., Saunders, C. M., Hashimoto, K., Swann, K., and Lai, F. A. (2002) Reproduction 124, 611-623). PLCzeta may represent the physiological stimulus for egg activation and development at mammalian fertilization. PLCzeta is the smallest known mammalian PLC isozyme, comprising two EF hand domains, a C2 domain, and the catalytic X and Y core domains. To gain insight into PLCzeta structure-function, we assessed the ability of PLCzeta and a series of domain-deletion constructs to cause phosphatidylinositol 4,5-bisphosphate hydrolysis in vitro and also to generate cytoplasmic Ca2+ changes in intact mouse eggs. PLCzeta and the closely related PLCdelta1 had similar K(m) values for phosphatidylinositol 4,5-bisphosphate, but PLCzeta was around 100 times more sensitive to Ca2+ than was PLCdelta1. Notably, specific phosphatidylinositol 4,5-bisphosphate hydrolysis activity was retained in PLCzeta constructs that had either EF hand domains or the C2 domain removed, or both. In contrast, Ca2+ sensitivity was greatly reduced when either one, or both, of the EF hand domains were absent, and the Hill coefficient was reduced upon deletion of the C2 domain. Microinjection into intact mouse eggs revealed that all domain-deletion constructs were ineffective at initiating Ca2+ oscillations. These data suggest that the exquisite Ca2+-dependent features of PLCzeta regulation are essential for it to generate inositol 1,4,5-trisphosphate and Ca2+ oscillations in intact mouse eggs.  相似文献   

14.
Addition of vasopressin to rat hepatocytes prelabeled with myo-[2-3H]inositol resulted in a very rapid decrease [3H]phosphatidylinositol 4,5-bisphosphate (Ptd-Ins-4,5-P2) which was paralleled by increases of up to 3-fold in the levels of [3H]inositol trisphosphate (Ins-P3) and [3H]inositol bisphosphate (Ins-P2). Increases of [3H]inositol phosphate (Ins-P) were not detected until about 5 min after hormone addition. These data indicate that the major pathway for hormone-induced lipid breakdown in liver is through a phosphodiesterase for PtdIns-4,5-P2 and that decreases of phosphatidylinositol are a secondary result of increased PtdIns-4,5-P2 resynthesis. Using the fluorescent Ca2+ indicator Quin 2, cytosolic free Ca2+ increased from 160 nM to about 400 nM after vasopressin addition to hepatocytes and preceded the conversion of phosphorylase b to a. Half-maximal and maximal increases of cytosolic free Ca2+ and phosphorylase a activity were observed at 0.2 and 1 nM vasopressin, respectively. The dose-response curve for the initial rate of cytosolic free Ca2+ increase was very similar to those obtained for the initial rates of Ins-P3 production and PtdIns-4,5-P2 breakdown. Pretreatment of hepatocytes with Li+ caused a 3--4-fold potentiation of vasopressin-induced elevations of Ins-P, Ins-P2, and Ins-P3, with half-maximal effects at 0.5, 1, and 5 mM, respectively. The calculated maximal concentrations of Ins-P3 in cells treated with 20 nM vasopressin were 10 and 30 microM, respectively, without and with Li+. Lithium did not affect the initial rate of inositol polyphosphate production or Ca2+ mobilization. The increase of Ins-P3 which correlated with peak cytosolic free Ca2+ elevation was about 0.6 microM. In a saponin-permeabilized hepatocyte preparation, Ins-P3 (1 microM) caused Ca2+ release from a vesicular, ATP-dependent Ca2+ pool. The data presented here suggest that Ins-P3 may be a second messenger for the mobilization of intracellular Ca2+ by hormones in liver.  相似文献   

15.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and α-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n ? 6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n ? 3 fatty acids (α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n ? 6 fatty acids (linoleic acid and arachidonic acid), the total n ? 3 fatty acyl content was reduced in all the phospholipids examined. In n ? 3 and n ? 6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n ? 9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appear to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n ? 3 and n ? 6 PUFA but not in n ? 9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i, representing Ca2+ release from the inositol 1,4,5-triphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n ? 9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n ? 3 and n ? 6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and n ? 9 monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   

16.
17.
The action of several ligands on the low- (LVA,T) and high-threshold (HVA,L and N) Ca channels of adult rat sensory neurons and human neuroblastoma IMR32 cells has been investigated. In both cell types, 40 microM Cd2+ and 6.4 microM /omega-Conotoxin (omega-CgTx) selectively blocked the HVA channels, sparing the majority of LVA channels that were antagonized by amiloride and Ni2+. In 50% of the cells, however, /omega-CgTx spared also a 15% of HVA channels that proved to be sensitive to BAY K 8644. The agonistic action of BAY K 8644 on [omega-CgTx-resistant HVA channels caused a large Ba current increase, prolonged current deactivation and acceleration of HVA channels inactivation that was particularly evident in adult rat DRG.  相似文献   

18.
The properties of the Ca2+, Mg2+-ATPase of erythrocyte membranes from patients with cystic fibrosis (CF) were extensively compared to that of healthy controls. Following removal of an endogenous membrane inhibitor of the ATPase, activation of the enzyme by Ca2+, calmodulin, limited tryptic digestion or oleic acid, as well as inhibition by trifluoperazine, were studied. The only properties found to be significantly different (CF cells vs controls) were calmodulin-stimulated peak activity (90 vs 101, P less than 0.02) and trypsin-activated peak activity (92 vs 102, P less than 0.02). No significant difference could be measured in the steady-state Ca2+-dependent phosphorylation of CF and control erythrocyte membranes indicating similar numbers of enzyme molecules per cell. The functional state of Ca2+ homeostasis in intact erythrocytes was investigated by measuring the resting cytosolic free Ca2+ levels using quin-2. Both CF and control erythrocytes maintained cytosolic free Ca2+ between 20 to 30 nM. Addition of 50 uM trifluoperazine resulted in an increase in erythrocyte cytosolic free Ca2+ to about 50 nM in both CF and control cells. Estimates of erythrocyte membrane permeability using the steady-state uptake of 45Ca into intact erythrocytes revealed no differences between CF and control cells. These results confirm that there is a small decrease in the calmodulin-stimulated activity of the erythrocyte Ca2+, Mg2+-ATPase in CF. However, this deficit is apparently not large enough to impair the ability of the CF erythrocyte to maintain normal resting levels of cytosolic free Ca2+.  相似文献   

19.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and alpha-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n-6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n-3 fatty acids (alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n-6 fatty acids (linoleic acid and arachidonic acid), the total n-3 fatty acyl content was reduced in all the phospholipids examined. In n-3 and n-6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n-9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appears to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n-3 and n-6 PUFA but not in n-9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i representing Ca2+ release from the inositol 1,4,5-trisphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n-9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n-3 and n-6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   

20.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号