首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Malun 《Histochemistry》1991,96(3):197-207
Two types of central neurons in the antennal lobe of the American cockroach Periplaneta americana were labeled with a combination of two specific markers. Their synaptic contacts were characterized and their distribution on the neurons examined. A uniglomerular pheromone-sensitive projection neuron with dendritic arbor in the male-specific macroglomerulus (attractant neuron) was characterized physiologically by intracellular recording and then filled with biocytin, which was converted to a marker for this individual neuron by a preembedding procedure. In a postembedding procedure local, multiglomerular interneurons were marked by immunogold labeling of GABA. Two kinds of synaptic contacts were found on the attractant neuron. (i) Input synapses from GABA-immunoreactive profiles. There were many of these, which (together with results of previous studies) suggests that local interneurons mediate polysynaptic transmission from antennal receptor fibers to the projection neuron. (ii) Output synapses onto GABA-immunoreactive profiles and onto non-identified neurons. These contacts indicate that signals generated by the projection neurons in a given glomerulus are passed back to multiglomerular interneurons and hence are also transmitted to other glomeruli.  相似文献   

2.
P Distler 《Histochemistry》1990,93(6):617-626
Synaptic contacts between GABA-immunoreactive neurons, antennal receptor fibers and non-GABA-immunoreactive neurons in the glomerular neuropil of the antennal lobes have been identified by means of a combination of (i) immunohistochemical labeling and (ii) labeling of afferent fibers of the antenna by experimentally induced degeneration. Characteristic contacts of these neurons are: a) Serially arranged polysynaptic contacts between degenerated antennal fibers, GABA-immunoreactive neurons and non-GABA-immunoreactive neurons. b) Monosynaptic contacts between degenerated antennal fibers and non-GABA-immunoreactive neurons. c) Reciprocal synaptic contacts between immunostained and non-stained neurons and synaptic contacts between individual GABA-immunoreactive neurons. d) Synaptic output contacts of GABA-immunoreactive neurons with degenerated antennal fibers. GABA-immunoreactive neuron profiles in the glomeruli are assigned to multiglomerular local interneurons (Distler 1989a); non-immunolabeled profiles may be assigned to projection neurons and other not yet identified interneurons.  相似文献   

3.
Summary Synaptic contacts between GABA-immunoreactive neurons, antennal receptor fibers and non-GABA-immunoreactive neurons in the glomerular neuropil of the antennal lobes have been identified by means of a combination of (i) immunohistochemical labeling and (ii) labeling of afferent fibers of the antenna by experimentally induced degeneration. Characteristic contacts of these neurons are: a) Serially arranged polysynaptic contacts between degenerated antennal fibers, GABA-immunoreactive neurons and non-GABA-immunoreactive neurons. b) Monosynaptic contacts between degenerated antennal fibers and non-GABA-immunoreactive neurons. c) Reciprocal synaptic contacts between immunostained and non-stained neurons and synaptic contacts between individual GABA-immunoreactive neurons. d) Synaptic output contacts of GABA-immunoreactive neurons with degenerated antennal fibers.GABA-immunoreactive neuron profiles in the glomeruli are assigned to multiglomerular local interneurons (Distler 1989a); non-immunolabeled profiles may be assigned to projection neurons and other not yet identified interneurons.  相似文献   

4.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

5.
Antennal lobe interneurons of male Spodoptera littoralis (Boisd.) were investigated by using intracellular recording and staining techniques. Physiological and morphological characteristics of local interneurons and projection neurons responding to sex pheromone and plant-associated volatiles are described. The interneurons identified were divided into three groups, depending on their physiological response characteristics. Both types of interneurons, local interneurons and projection neurons, were described in all three groups. 1. Interneurons responding exclusively to sex pheromone stimuli, displayed different degrees of specificity. These neurons responded to either one, two, three or all four of the single sex pheromone or sex pheromone-like compounds tested. Most of these neurons also responded to a mixture of the two pheromone components present in the female S. littoralis blend. Two local interneurons and one projection neuron were identified as blend specialists, not responding to the single female produced sex pheromone components, but only to their mixture. Five pheromone specific projection neurons arborized in one or more subcompartments of the macroglomercular complex (MGC) and some of them had axonal branches in the calyces of the mushroom body and in different parts of the lateral protocerebrum. 2. Interneurons responding only to plant-associated volatiles varied highly in specificity. Neurons responding to only one of the stimuli, neurons responding to a variety of different odours and one neuron responding to all stimuli tested, were found. Three specialized local interneurons had arborizations only in ordinary glomeruli. One specialized and three less specialized local interneurons had arborizations within the MGC and the ordinary glomeruli. The projection neurons responding only to plant-associated volatiles had mostly uni- or multiglomerular arborizations within the ordinary glomeruli. 3. Interneurons responding to both sex pheromones and plant-associated stimuli varied in specificity. Individual interneurons that responded to few plant-associated odours mostly responded to several pheromone stimuli as well. Projection neurons responding to most of the plant-associated volatiles also responded to all pheromone stimuli. Two local interneurons responding to both stimulus groups, arborized within the MGC and the ordinary glomeruli. Projection neurons mostly arborized in only one ordinary glomerulus or in one compartment of the MGC. The variation in specificity and sensitivity of antennal lobe interneurons and structure-function correlations are discussed.  相似文献   

6.
P Distler 《Histochemistry》1990,93(4):401-408
Dopamine-like immunoreactivity was demonstrated histochemically in about ten local interneurons in the antennal lobe of Periplaneta americana. The somata of these neurons are within the ventrolateral group of cell bodies. Additional immunohistochemical tests revealed that the same neurons also have a GABA-like immunoreactivity. Immunohistochemical dopamine staining (preembedding) of preparations in which the antennal receptor fibers had been caused to degenerate showed that in the glomerular neuropil these antennal fibers form output synapses on dopamine-immunoreactive neurons. The latter form output synapses on unstained neuron profiles.  相似文献   

7.
Summary Dopamine-like immunoreactivity was demonstrated histochemically in about ten local interneurons in the antennal lobe of Periplaneta americana. The somata of these neurons are within the ventrolateral group of cell bodies. Additional immunohistochemical tests revealed that the same neurons also have a GABA-like immunoreactivity.Immunohistochemical dopamine staining (preembedding) of preparations in which the antennal receptor fibers had been caused to degenerate showed that in the glomerular neuropil these antennal fibers form output synapses on dopamine-immunoreactive neurons. The latter form output synapses on unstained neuron profiles.  相似文献   

8.
The antennal lobe (AL) is the primary structure in the Drosophila brain that relays odor information from the antennae to higher brain centers. The characterization of uniglomerular projection neurons (PNs) and some local interneurons has facilitated our understanding of olfaction; however, many other AL neurons remain unidentified. Because neuron types are mostly specified by lineage and temporal origins, we use the MARCM techniques with a set of enhancer-trap GAL4 lines to perform systematical lineage analysis to characterize neuron morphologies, lineage origin and birth timing in the three AL neuron lineages that contain GAL4-GH146-positive PNs: anterodorsal, lateral and ventral lineages. The results show that the anterodorsal lineage is composed of pure uniglomerular PNs that project through the inner antennocerebral tract. The ventral lineage produces uniglomerular and multiglomerular PNs that project through the middle antennocerebral tract. The lateral lineage generates multiple types of neurons, including uniglomeurlar PNs, diverse atypical PNs, various types of AL local interneurons and the neurons that make no connection within the ALs. Specific neuron types in all three lineages are produced in specific time windows, although multiple neuron types in the lateral lineage are made simultaneously. These systematic cell lineage analyses have not only filled gaps in the olfactory map, but have also exemplified additional strategies used in the brain to increase neuronal diversity.  相似文献   

9.
Three classes of neurons form synapses in the antennal lobe of Drosophila, the insect counterpart of the vertebrate olfactory bulb: olfactory receptor neurons, projection neurons, and inhibitory local interneurons. We have targeted a genetically encoded optical reporter of synaptic transmission to each of these classes of neurons and visualized population responses to natural odors. The activation of an odor-specific ensemble of olfactory receptor neurons leads to the activation of a symmetric ensemble of projection neurons across the glomerular synaptic relay. Virtually all excited glomeruli receive inhibitory input from local interneurons. The extent, odor specificity, and partly interglomerular origin of this input suggest that inhibitory circuits assemble combinatorially during odor presentations. These circuits may serve as dynamic templates that extract higher order features from afferent activity patterns.  相似文献   

10.
昆虫触角叶的结构   总被引:1,自引:0,他引:1  
赵新成  翟卿  王桂荣 《昆虫学报》2015,58(2):190-209
触角叶是昆虫脑内初级嗅觉中心,通过触角神经与触角联系。触角叶主要由嗅觉受体神经元、局域中间神经元、投射神经元和远心神经元构成。这些神经元的形态多样,其形态变化与其功能和昆虫嗅觉行为相关。这些神经元在触角叶内交织形成神经纤维网,在突触联系紧密的地方形成纤维球,纤维球通常排列在触角叶外周。通常,昆虫触角叶内纤维球的数量、大小和位置相对固定,并且几乎每个小球都可以被识别和命名。不同种类、性别和品级的昆虫中,纤维球的数量、大小和排列方式各不相同。触角叶结构神经元组成和纤维球的多样性,与各种昆虫嗅觉行为的特异性相对应。  相似文献   

11.
A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

12.
Summary A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

13.
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete‐expressing local interneurons in development of the adult olfactory circuitry. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

14.
Yu D  Ponomarev A  Davis RL 《Neuron》2004,42(3):437-449
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.  相似文献   

15.
16.
Tremendous evolutional success and the ecological dominance of social insects, including ants, termites and social bees, are due to their efficient social organizations and their underlying communication systems. Functional division into reproductive and sterile castes, cooperation in defending the nest, rearing the young and gathering food are all regulated by communication by means of various kinds of pheromones. No brain structures specifically involved in the processing of non-sexual pheromone have been physiologically identified in any social insects. By use of intracellular recording and staining techniques, we studied responses of projection neurons of the antennal lobe (primary olfactory centre) of ants to alarm pheromone, which plays predominant roles in colony defence. Among 23 alarm pheromone-sensitive projection neurons recorded and stained in this study, eight were uniglomerular projection neurons with dendrites in one glomerulus, a structural unit of the antennal lobe, and the remaining 15 were multiglomerular projection neurons with dendrites in multiple glomeruli. Notably, all alarm pheromone-sensitive uniglomerular projection neurons had dendrites in one of five 'alarm pheromone-sensitive (AS)' glomeruli that form a cluster in the dorsalmost part of the antennal lobe. All alarm pheromone-sensitive multiglomerular projection neurons had dendrites in some of the AS glomeruli as well as in glomeruli in the anterodorsal area of the antennal lobe. The results suggest that components of alarm pheromone are processed in a specific cluster of glomeruli in the antennal lobe of ants.  相似文献   

17.
The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection neurons which along the same major axon pathways (antennal tracts) used by the antennal projection neurons, but which form connections that include regions outside the “classical” olfactory circuit triad antennal lobe-mushroom body-lateral horn. Our work will benefit functional studies of the larval olfactory circuit, and shed light on the relationship between larval and adult neurons.  相似文献   

18.
M Higgins  M Miller  A Nighorn 《PloS one》2012,7(8):e42556
Nitric oxide has been shown to regulate many biological systems including olfaction. In the moth olfactory system nitric oxide is produced in the antennal lobe in response to odor stimulation and has complex effects on the activity of both projection neurons and local interneurons. To examine the cell autonomous effects of nitric oxide on these cells, we used patch-clamp recording in conjunction with pharmacological manipulation of nitric oxide to test the hypothesis that nitric oxide differentially regulates the channel properties of these different antennal lobe neuron subsets. We found that nitric oxide caused increasing inward currents in a subset of projection neurons while the effects on local neurons were variable but consistent within identifiable morphological subtypes.  相似文献   

19.
1. Single unimodal (olfactory) or multimodal (olfactory and mechanosensory) neurons in the antennal lobe of the deutocerebrum of the American cockroach were characterized functionally by microelectrode recording, and their morphological types and positions in the brain were established by dye injection. Thus individual, physiologically identified neurons of known shape could be mapped in reference to the areas of soma groups, glomeruli, tracts and their projection regions in the brain. 2. All of these neurons send processes to deutocerebral glomeruli, i.e., the regions in which the axons of antennal sensory cells terminate. Output neurons have axons that leave the deutocerebrum whereas local interneurons are anaxonic. 3. An output neuron innervates only one glomerulus, sending its axon into the calyces of the corpora pedunculata (CP) in the protocerebrum, where by multiple branching they reach many CP neurons. The same axons send collaterals into the lateral lobe of the protocerebrum. Because of this arrangement, each deutocerebral glomerulus is represented individually and separately in the two projection regions. The fine structure of the endings of the deutocerebral axons in the protocerebrum is described. In the CP calyces they form microglomeruli with typical divergent connectivity. 4. A local interneuron innervates many glomeruli without sending processes to other parts of the brain. 5. Unimodal olfactory and multimodal neurons can be either output neurons or local interneurons; multimodal information is sent to the protocerebrum directly, in parallel with the unimodal information. 6. At least one glomerulus--the macroglomerulus of the male deutocerebrum--is specialized so as to provide an exclusive topographic representation of certain olfactory stimuli not represented elsewhere (female sexual pheromone).  相似文献   

20.
The stuttering interneurons (STi) represent one minor subset of interneuron population and exhibit characteristic stuttering firing upon depolarization current injection. While it has been long held that the GABAergic inhibitory transmission largely varies with the subtype identity of presynaptic interneurons, whether such a rule also applies to STi is largely unknown. Here, by paired recording of interneuron and their neighboring projection neuron in lateral amygdala, we found that relative to the fast spiking and late spiking interneurons, the STi-evoked unitary postsynaptic currents onto the projection neurons had markedly larger amplitude, shorter onset latency and faster rising and decay kinetics. The quantal content and the number of vesicles in the readily releasable pool were also larger in synapses made by STi versus other interneurons. Moreover, the short-term plasticity, as reflected by the paired pulse depression and depolarization-induced suppression of inhibition, was the least prominent in the output synapses of STi. Thus, the fast and robust inhibition together with its low capacity of short term modulation may suggest an important role for STi in preventing the overexcitation of the projection neurons and thus gating the information traffic in amygdala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号