首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress is a key apoptotic stimulus in neuronal cell death and has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson disease (PD). Recently, we demonstrated that protein kinase C-delta (PKCdelta) is an oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce apoptotic cell death in cell culture models of Parkinson disease (Kaul, S., Kanthasamy, A., Kitazawa, M., Anantharam, V., and Kanthasamy, A. G. (2003) Eur. J. Neurosci. 18, 1387-1401 and Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A., and Anantharam, V. (2003) Antioxid. Redox. Signal. 5, 609-620). Here we showed that the phosphorylation of a tyrosine residue in PKCdelta can regulate the proteolytic activation of the kinase during oxidative stress, which consequently influences the apoptotic cell death in dopaminergic neuronal cells. Exposure of a mesencephalic dopaminergic neuronal cell line (N27 cells) to H(2)O(2)(0-300 microm) induced a dose-dependent increase in cytotoxicity, caspase-3 activation and PKCdelta cleavage. H(2)O(2)-induced proteolytic activation of PKC was delta mediated by the activation of caspase-3. Most interestingly, both the general Src tyrosine kinase inhibitor genistein (25 microm) and the p60(Src) tyrosine-specific kinase inhibitor (TSKI; 5 microm) dramatically inhibited H(2)O(2) and the Parkinsonian toxin 1-methyl-4-phenylpyridinium-induced PKCdelta cleavage, kinase activation, and apoptotic cell death. H(2)O(2) treatment also increased phosphorylation of PKCdelta at tyrosine site 311, which was effectively blocked by co-treatment with TSKI. Furthermore, N27 cells overexpressing a PKCdelta(Y311F) mutant protein exhibited resistance to H(2)O(2)-induced PKCdelta cleavage, caspase activation, and apoptosis. To our knowledge, these data demonstrate for the first time that phosphorylation of Tyr-311 on PKCdelta can regulate the proteolytic activation and proapoptotic function of the kinase in dopaminergic neuronal cells.  相似文献   

2.
We have studied the effects of different concentrations of H(2)O(2) on the proliferation of PC-3 prostate carcinoma cells. Since this cell line lacks functional p53, we sought to characterize whether apoptotic response to the oxidative insult was altered such that, unlike in cells containing functional p53 apoptosis may be reduced and replaced by other mechanisms of cellular arrest and death. We did not observe necrosis in PC-3 cells treated with H(2)O(2) concentrations of up to 500 microM. In the presence of 50 microM H(2)O(2), arrest was observed in the G2-phase of the cell cycle, along with p53-independent apoptosis. In the presence of 500 microM H(2)O(2), addition of l-buthionine sulfoximine increased the percentage of apoptotic cell death. Senescence-associated cell arrest was never observed. Moreover, some of the treated cells seemed to be resistant to oxidative damage. These cells re-entered the cell cycle and proliferated normally. Analysis of the expression of p21(waf1) and of p21 protein levels, as well as the activity of caspase-3 and caspase-8, allowed us to characterize some aspects of the arrest of PC-3 cells in G2 and the apoptotic response to oxidative stress in the absence of functional p53.  相似文献   

3.
The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50-200 microm H(2)O(2) caused the activation of caspase-3 beginning after 2-3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H(2)O(2)-induced caspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H(2)O(2) or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate neurotransmission may exacerbate neuronal loss.  相似文献   

4.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

5.
Approaches to protection against neurodegenerative diseases, in which oxidative stress and inflammation are implicated, should be based on the current concept on the etiology of these diseases. Recently, a new therapeutic strategy has been proposed to protect neurons from cell death by attenuating the apoptotic signal transduction. Lignin, a durable aromatic network polymer second to cellulose in abundance, was able to be converted into highly active lignophenol derivatives with antioxidant activity by using our newly developed phase-separation technique. These lignophenol derivatives were found to show the potent neuroprotective activity against oxidative stress. Among the compounds examined, a lignocresol derivative from bamboo (lig-8) exhibited the most potent neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced apoptosis in human neuroblastoma cell line SH-SY5Y by preventing the caspase-3 activation via either caspase-8 or caspase-9. Furthermore, it was found that lig-8 exerted the antiapoptotic effect by inhibiting dissipation of the mitochondrial membrane permeability transition induced by H(2)O(2) or by the peripheral benzodiazepin receptor ligand PK11195. Lig-8 was also shown to be potent in the antioxidant activity in the cells exposed to H(2)O(2), as assessed by flow cytometry using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and in vitro reactive oxygen species-scavenging potency. These data suggest that lig-8 is a promising neuroprotector, which affects the signaling pathway of neuronal cell death and that it would be of benefit to delay the progress of neurodegenerative diseases.  相似文献   

6.
L Sun  HY Yau  WY Wong  RA Li  Y Huang  X Yao 《PloS one》2012,7(8):e43186
Melastatin-like transient receptor potential channel 2 (TRPM2) is an oxidant-sensitive and cationic non-selective channel that is expressed in mammalian vascular endothelium. Here we investigated the functional role of TRPM2 channels in hydrogen peroxide (H(2)O(2))-induced cytosolic Ca(2+) ([Ca(2+)](i)) elavation, whole-cell current increase, and apoptotic cell death in murine heart microvessel endothelial cell line H5V. A TRPM2 blocking antibody (TM2E3), which targets the E3 region near the ion permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the [Ca(2+)](i) rise and whole-cell current change in response to H(2)O(2). Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA) had similar inhibitory effect. H(2)O(2)-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific shRNA both showed protective effect against H(2)O(2)-induced apoptotic cell death. TM2E3 and TRPM2-specific shRNA also protect the cells from tumor necrosis factor (TNF)-α-induced cell death in MTT assay. In contrast, overexpression of TRPM2 in H5V cells resulted in an increased response in [Ca(2+)](i) and whole-cell currents to H(2)O(2). TRPM2 overexpression also aggravated the H(2)O(2)-induced apoptotic cell death. Downstream pathways following TRPM2 activation was examined. Results showed that TRPM2 activity stimulated caspase-8, caspase-9 and caspase-3. These findings strongly suggest that TRPM2 channel mediates cellular Ca(2+) overload in response to H(2)O(2) and contribute to oxidant-induced apoptotic cell death in vascular endothelial cells. Down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells from apoptotic cell death.  相似文献   

7.
The pathogenesis underlying the selective degeneration of nigral dopaminergic neurons in Parkinson's disease is not fully understood but several lines of evidence implicate the role of oxidative stress and mitochondrial dysfunction. Depletion in levels of the thiol reducing agent glutathione (GSH + GSSG) is the earliest reported biochemical event to occur in the Parkinsonian substantia nigra prior to selective loss of complex I (CI) activity associated with the disease believed to contribute to subsequent dopaminergic cell death. Recent studies from our laboratory have demonstrated that acute reduction in both cellular and mitochondrial glutathione levels results in increased oxidative stress and a decrease in mitochondrial function linked to a selective decrease in CI activity through an NO-mediated mechanism (Jha, N.; Jurma, O.; Lalli, G.; Liu, Y.; Pettus, E. H.; Greenamyre, J. T.; Liu, R. M.; Forman, H. J.; Andersen, J. K. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease J. Biol. Chem. 275: 26096-26101; 2000. Hsu, M.; Srinivas, B.; Kumar, J.; Subramanian, R.; Andersen, J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease J. Neurochem. 92: 1091-1103.2005.). However, the effect of prolonged glutathione depletion on dopaminergic cells is not known. In this present study, using low concentrations of buthionine-S-sulfoximine, a chemical inhibitor of the de novo glutathione synthesizing enzyme glutamate cysteine ligase, we developed a chronic model in which glutathione depletion in dopaminergic N27 cells for a 7-day period was found to lead to inhibition of CI activity via a peroxynitrite-mediated event which is reversible by the thiol reducing agent, dithiothreitol, and coincides with increased S-nitrosation of mitochondrial proteins.  相似文献   

8.
Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species modify cellular targets to induce neurotoxicity remains unknown. In this study, we determined the role of mitochondrial aconitase (m-aconitase) in neurotoxicity by decreasing its expression. Incubation of the rat dopaminergic cell line, N27, with paraquat (PQ(2+) ) resulted in aconitase inactivation, increased hydrogen peroxide (H(2) O(2) ) and increased ferrous iron (Fe(2+) ) at times preceding cell death. To confirm the role of m-aconitase in dopaminergic cell death, we knocked down m-aconitase expression via RNA interference. Incubation of m-aconitase knockdown N27 cells with PQ(2+) resulted in decreased H(2) O(2) production, Fe(2+) accumulation, and cell death compared with cells expressing basal levels of m-aconitase. To determine the metabolic role of m-aconitase in mediating neuroprotection, we conducted a complete bioenergetic profile. m-Aconitase knockdown N27 cells showed a global decrease in metabolism (glycolysis and oxygen consumption rates) which blocked PQ(2+) -induced H(+) leak and respiratory capacity deficiency. These findings suggest that dopaminergic cells are protected from death by decreasing release of H(2) O(2) and Fe(2+) in addition to decreased cellular metabolism.  相似文献   

9.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

10.
Paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridinium),awidely-used herbicide, has been suggested as a potential etiologic factor for the development of Parkinson's disease. In recent years, many studies have focused on the mechanism(s) of PQ neurotoxicity. In this study, we examined the neuroprotective effect of manganese (Ⅲ) meso-tetrakis (N,N′-diethylimi- dazolium) porphyrin (MnTDM), a superoxide dismutase/ catalase mimetic, on PQ-induced oxidative stress and apoptosis in 1 RB3AN27 (N27) cells, a dopaminergic neuronal cell line. The results indicated that MnTDM significantly attenuated PQ-induced loss of cell viability, glutathione depletion, and reactive oxygen species production. MnTDM also ameliorated PQ-induced morphological nuclear changes of apoptosis and increased rates of apoptosis. In addition, our data provide direct evidence that MnTDM suppressed PQ- induced caspase-3 cleavage, possibly a key event of PQ neurotoxicity. These observations suggested that oxidative stress and apoptosis are implicated in PQ-induced neurotoxicity and this toxicity could be prevented by MnTDM. These findings also proposed a novel therapeutic approach for Parkinson's disease and other disorders associated with oxidative stress.  相似文献   

11.
Recent etiological study in twins (Tanner et al. 1999) strongly suggests that environmental factors play an important role in typical, non-familial Parkinson's disease (PD), beginning after age 50. Epidemiological risk factor analyses of typical PD cases have identified several neurotoxicants, including MPP(+) (the active metabolite of MPTP), paraquat, dieldrin, manganese and salsolinol. Here, we tested the hypothesis that these neurotoxic agents might induce cell death in our nigral dopaminergic cell line, SN4741 (Son et al. 1999) through a common molecular mechanism. Our initial experiments revealed that treatment with both MPP(+) and the other PD-related neurotoxicants induced apoptotic cell death in SN4741 cells, following initial increases of H(2)O(2)-related ROS activity and subsequent activation of JNK1/2 MAP kinases. Moreover, we have demonstrated that during dopaminergic cell death cascades, MPP(+), the neurotoxicants and an oxidant, H(2)O(2) equally induce the ROS-dependent events. Remarkably, the oxidant treatment alone induced similar sequential molecular events: ROS increase, activation of JNK MAP kinases, activation of the PITSLRE kinase, p110, by both Caspase-1 and Caspase-3-like activities and apoptotic cell death. Pharmacological intervention using the combination of the antioxidant Trolox and a pan-caspase inhibitor Boc-(Asp)-fmk (BAF) exerted significant neuroprotection against ROS-induced dopaminergic cell death. Finally, the high throughput cDNA microarray screening using the current model identified downstream response genes, such as heme oxygenase-1, a constituent of Lewy bodies, that can be the useful biomarkers to monitor the pathological conditions of dopaminergic neurons under neurotoxic insult.  相似文献   

12.
13.
Studies on human and animal models of retinal dystrophy have suggested that apoptosis may be the common pathway of photoreceptor cell death. Autophagy, the major cellular degradation process in animal cells, is important in normal development and tissue remodeling, as well as under pathological conditions. Previously we provided evidence that genes, whose products are involved in apoptosis and autophagy, may be coexpressed in photoreceptors undergoing degeneration. Here, we investigated autophagy in oxidative stress-mediated cell death in photoreceptors, analyzing the light-damage mouse model and 661W photoreceptor cells challenged with H(2)O(2). In the in vivo model, we demonstrated a time-dependent increase in the number of TUNEL-positive cells, concomitant with the formation of autophagosomes. In vitro, oxidative stress increased mRNA levels of apoptotic and autophagic marker genes. H(2)O(2) treatment resulted in the accumulation of TUNEL-positive cells, the majority of which contain autophagosomes. To determine whether autophagy and apoptosis might precede each other or co-occur, we performed inhibitor studies. The autophagy inhibitor 3-methyladenine (3-MA), silencing RNA (siRNA) against two genes whose products are required for autophagy (autophagy-related (ATG) gene 5 and beclin 1), as well as the pan-caspase-3 inhibitor, Zvad-fmk, were both found to partially block cell death. Blocking autophagy also significantly decreased caspase-3 activity, whereas blocking apoptosis increased the formation of autophagosomes. The survival effects of 3?MA and zVAD-fmk were not additive; rather treatment with both inhibitors lead to increased cell death by necrosis. In summary, the study first suggests that autophagy participates in photoreceptor cell death possibly by initiating apoptosis. Second, it confirms that cells that normally die by apoptosis will execute cell death by necrosis if the normal pathway is blocked. And third, these results argue that the up-stream regulators of autophagy need to be identified as potential therapeutic targets in photoreceptor degeneration.  相似文献   

14.
Induction of heat shock proteins (HSPs) protects cells from oxidative injury. Here Hsp72, Hsp27 and heme oxygenase-1 (HO-1) were induced in cultured rat astrocytes, and protection against oxidative stress was investigated. Astrocytes were treated with sodium arsenite (20-50 micro m) for 1 h, which was non-toxic to cells, 24 h later they were exposed to 400 micro m H2O2 for 1 h, and cell death was evaluated at different time points. Arsenite triggered strong induction of HSPs, which was prevented by 1 micro g/mL cycloheximide (CXH). H2O2 caused cell loss and increased cell death with features of apoptosis, i.e. TdT-mediated dUTP nick-end labelling (TUNEL) reaction and caspase-3 activation. These features were abrogated by pre-treatment with arsenite, which prevented cell loss and significantly reduced the number of dead cells. The protective effect of arsenite was not detected in the presence of CHX. Pre-treatment with arsenite increased protein kinase B (Akt) and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation after H2O2. However, while Akt phosphorylation was prevented by CHX, Erk1/2 phosphorylation was further enhanced by CHX. The results show that transient arsenite pre-treatment induces Hsp72, HO-1 and, to a lesser extent, Hsp27; it reduces H2O2-induced astrocyte death; and it causes selective activation of Akt following H2O2. It is suggested that HSP expression at the time of H2O2 exposure protects astrocytes from oxidative injury and apoptotic cell death by means of pro-survival Akt.  相似文献   

15.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

16.
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5–250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.  相似文献   

17.
beta-Carbolines are potential endogenous and exogenous neurotoxicants that may contribute to the pathogenesis of Parkinson's disease. The 2,9-dimethyl-beta-carbolinium ion (either 2,9-dimethyl-beta-norharmanium or 2,9-Me(2)NH(+)) was found to be neurotoxic in primary mesencephalic cultures and to be a potent inhibitor of mitochondrial complex I. However, the precise mechanisms of cell death remained obscure. Here, we investigated the mechanism of cell death in primary dopaminergic cultures of the mouse mesencephalon mediated by 2,9-Me(2)NH(+). The beta-carboline caused preferential death of dopaminergic neurones, which could not be attributed to cellular uptake via the dopamine transporter. Transient incubation with 2,9-Me(2)NH(+) for 48 h caused a progressive deterioration in the morphology of dopaminergic neurones during a 5-day recovery period and persistent damage to the overall culture. An increase in free radical production and caspase-3 activity, as well as a decrease of respiratory activity, mitochondrial membrane potential and ATP content, contributed to toxicity and pointed to an apoptotic mode of cell death, although a significant quantity of cells dying via necrosis were present simultaneously. These data underline the preferential susceptibility of dopaminergic neurones to 2,9-Me(2)NH(+) as a potent, oxidative stress generating neurotoxin.  相似文献   

18.
Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2.  相似文献   

19.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

20.
Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 μM) significantly attenuated 6-OHDA (50 μM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号