首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We describe an unusual hybrid histidine protein kinase, which is important for spatially coupling cell aggregation and sporulation during fruiting body formation in Myxococcus xanthus. A rodK mutant makes abnormal fruiting bodies and spores develop outside the fruiting bodies. RodK is a soluble, cytoplasmic protein, which contains an N-terminal sensor domain, a histidine protein kinase domain and three receiver domains. In vitro phosphorylation assays showed that RodK possesses kinase activity. Kinase activity is essential for RodK function in vivo. RodK is present in vegetative cells and remains present until the late aggregation stage, after which the level decreases in a manner that depends on the intercellular A-signal. Genetic evidence suggests that RodK may regulate multiple temporally separated events during fruiting body formation including stimulation of early developmental gene expression, inhibition of A-signal production and inhibition of the intercellular C-signal transduction pathway. We speculate that RodK undergoes a change in activity during development, which is reflected in changes in phosphotransfer to the receiver domains.  相似文献   

9.
Five independent DNA microarray experiments were used to study the gene expression profile of a 5-day Bacillus subtilis air-liquid interface biofilm relative to planktonic cells. Both wild-type B. subtilis and its sporulation mutant (DeltaspoIIGB::erm) were investigated to discern the important biofilm genes (in the presence and absence of sporulation). The microarray results indicated that suspension cells were encountering anaerobic conditions, and the air-liquid interface biofilm was metabolically active. For the statistically significant differential expression (P < 0.05), there were 342 genes induced and 248 genes repressed in the wild-type biofilm, whereas 371 genes were induced and 128 genes were repressed in the sporulation mutant biofilm. The microarray results were confirmed with RNA dot blotting. A small portion of cells (1.5%) in the wild-type biofilm formed spores and sporulation genes were highly expressed. In the biofilm formed by the sporulation mutant, competence genes (comGA, srfAA, srfAB, srfAD, and comS) were induced which indicate a role for quorum sensing (bacterial gene expression controlled by sensing their population) in biofilms. There were 53 genes consistently induced in the biofilms of both the wild-type strain and its spoIIGB mutant-those genes have functions for transport, metabolism, antibiotic production-and 26 genes with unknown functions. Besides the large number of genes with known functions induced in the biofilm (121 genes in the wild-type biofilm and 185 genes in the sporulation mutant biofilm), some genes with unknown functions were also induced (221 genes in the wild-type biofilm and 186 genes in the sporulation mutant biofilm), such as the yve operon which appears to be involved in polysaccharide synthesis and the ybc operon which inhibits the growth of competitors for nutrients. A knockout mutant of yveR was constructed, and the mutant showed major defects in biofilm maintenance. Both the wild-type strain and its sporulation mutant formed normal biofilms, suggesting complete sporulation is not necessary for biofilm formation. The expression profiles of these two strains share more repressed genes than induced genes, suggesting that the biofilm cells repress similar pathways in response to starvation and high cell density.  相似文献   

10.
The most widely studied "relaxed" mutant of the relA locus, the relA1 allele, is shown here to consist of an IS2 insertion between the 85th and 86th codons of the otherwise wild-type relA structural gene, which normally encodes a 743-amino acid (84 kDa) protein. The RelA protein is a ribosome-dependent ATP:GTP (GDP) pyrophosphoryltransferase that is activated during the stringent response to amino acid starvation and thereby occasions the accumulation of guanosine 3',5'-bispyrophosphate (ppGpp). We propose that the IS2 insertion functionally splits the RelA protein into two (alpha and beta) peptide fragments which can complement each other in trans to yield residual ppGpp synthetic activity; neither fragment shows this activity when expressed alone. Cell strains with a single copy relA null allele show physiological behavior that is much the same as relA1 mutant strains. Both relA1 and relA null strains accumulate ppGpp during glucose starvation and do not accumulate ppGpp during the stringent response. The presence of ppGpp in verifiable relA null strains is interpreted as unequivocal evidence for an alternate route of ppGpp synthesis that exists in addition to the relA-dependent reaction.  相似文献   

11.
12.
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.  相似文献   

13.
14.
15.
16.
Myxococcus xanthus has a complex life cycle that includes fruiting body formation. One of the first stages in development has been called A-signalling. The asg (A-signalling) mutants have been proposed to be deficient in producing A-signal, resulting in development arresting at an early stage. In this paper, we report the identification of a new asg locus asgD. This locus appears to be involved in both environmental sensing and intercellular signalling. Expression of asgD was undetected during vegetative growth, but increased dramatically within 1 h of starvation. The AsgD protein is predicted to contain 773 amino acids and to be part of a two-component regulatory system because it has a receiver domain located at the N-terminus and a histidine protein kinase at the C-terminus. An asgD null mutant was defective in fruiting body formation and sporulation on CF medium. However, the defects of the mutant were complemented extracellularly when cells were mixed with wild-type strains or with bsgA, csgA, dsgA or esgA mutants, but were not complemented extracellularly by asgA, asgB or asgC mutants. In addition, the mutant was rescued by a subset of A-factor amino acids. Surprisingly, when the mutant was plated on stringent starvation medium rather than CF, cells were able to form fruiting bodies. Thus, it appears that AsgD is directly or indirectly involved in sensing nutritionally limiting conditions. The discovery of the asgD locus provides an important sensory transduction component of early development in M. xanthus.  相似文献   

17.
Strains of Escherichia coli which lack detectable guanosine 3',5'-bispyrophosphate (ppGpp) display a pleiotropic phenotype that in some respects resembles that of rpoS (katF) mutants. This led us to examine whether ppGpp is a positive regulator of sigma s synthesis. sigma s is a stationary-phase-specific sigma factor that is encoded by the rpoS gene. We found that a ppGpp-deficient strain is defective in sigma s synthesis as cells enter stationary phase in a rich medium, as judged by immunoblots. Under more-defined conditions we found that the stimulation of sigma s synthesis following glucose, phosphate, or amino acid starvation of wild-type strains is greatly reduced in a strain lacking ppGpp. The failure of ppGpp-deficient strains to synthesize sigma s in response to these starvation regimens could indicate a general defect in gene expression rather than a specific dependence of rpoS expression on ppGpp. We therefore tested the effect of artificially elevated ppGpp levels on sigma s synthesis either with mutations that impair ppGpp decay or by gratuitously inducing ppGpp synthesis with a Ptac::relA fusion. In both instances, we observed enhanced sigma s synthesis. Apparently, ppGpp can activate sigma s synthesis under conditions of nutrient sufficiency as well as during entry into stationary phase. This finding suggests that changes in ppGpp levels function both as a signal of imminent stationary phase and as a signal of perturbations in steady-state growth.  相似文献   

18.
19.
The Myxococcus xanthus asg genes ( asgA, asgB , and asgC ) are necessary for production of extracellular A-signal, which is thought to function as a cell-density signal. Previous analyses of the asgA and asgB genes suggest that they perform regulatory functions. In this work, we localized asgC to a region that contains genes homologous to rpsU, dnaG , and rpoD of the Escherichia coli macromolecular synthesis (MMS) operon. Surprisingly, asgC767 was found to be a mutant allele of rpoD , the gene encoding the major sigma factor of M. xanthus . The mutation in asgC767 results in a glutamate to lysine substitution at amino acid 598, which lies within conserved region 3.1 of the major sigma factors. Previous studies have shown that the asg mutants share a number of growth and developmental phenotypes. We found that A-signal restores developmental expression of an A-signal-dependent gene (Ω4521) in the asgC767 ( rpoDEK598 ) mutant background in a manner similar to that seen in the asgA and asgB mutants. Because the asg mutants have very similar phenotypes and the asg genes encode proteins that appear to have regulatory functions, we hypothesize that the asg gene products function together in a regulatory pathway that is required for extracellular A-signal production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号