首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly of primordial follicles early in ovarian development and subsequent transition to primary follicles are critical processes in ovarian biology. Inappropriate coordination of these processes contributes to ovarian pathologies such as premature ovarian failure and infertility. To better understand the molecular mechanisms involved in primordial follicle assembly and development, 2‐D PAGE and MALDI‐TOF/TOF technologies were used to construct a comparative proteome profile of the immature rat ovary at specific time‐points (0, 24, 48, and 72 h postpartum). A total of 154 differential protein spots corresponding to 134 different proteins were definitively identified between any two time‐points. Further cluster analysis showed four expression patterns, and each pattern correlated with specific cell processes that occur during early ovarian development. Seven proteins were randomly selected to verify expression patterns using Western blotting, and subsequently immunohistochemistry was performed to further investigate their cellular localization. Additionally, detailed functional analyses of these differentially expressed proteins were performed. Elucidation of how these changes in protein expression level coordinate primordial follicles assembly and development is intended to provide a better understanding of these critical biological processes early in ovarian development and will provide potential therapeutic molecular targets to regulate ovarian function and treat ovarian disease.  相似文献   

2.
Stress proteins HSP90 (Heat shock proteins) are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, folding and degradation of proteins. HSP90 have been found in a variety of organisms including pathogens suggesting that they are ancient and conserved proteins. Here, using molecular modeling and docking protocols, antibiotic Geldenamycin and its analog are targeted to the HSP90 homolog proteins of pathogenic protozoans Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei and Entamoeba Histolytica. The designed analogs of geldenamycin have shown drug like property with improved binding affinity to their targets. A decrease in insilico affinity of the analogs for the Human HSP90 target indicates that they can be used as potential drug candidates.  相似文献   

3.
Isosterism is commonly used in drug discovery and development to address stability, selectivity, toxicity, pharmacokinetics, and efficacy issues. A series of 14-O-substituted naltrexone derivatives were identified as potent mu opioid receptor (MOR) antagonists with improved selectivity over the kappa opioid receptor (KOR) and the delta opioid receptor (DOR), compared to naltrexone. Since esters are not metabolically very stable under typical physiological conditions, their corresponding amide analogs were thus synthesized and biologically evaluated. Unlike their isosteres, most of these novel ligands seem to be dually selective for the MOR and the KOR over the DOR. The restricted flexibility of the amide bond linkage might be responsible for their altered selectivity profile. However, the majority of the 14-N-substituted naltrexone derivatives produced marginal or no MOR stimulation in the 35S-GTP[γS] assay, which resembled their ester analogs. The current study thus indicated that the 14-substituted naltrexone isosteres are not bioisosteres since they have distinctive pharmacological profile with the regard to their opioid receptor binding affinity and selectivity.  相似文献   

4.
A general method for obtaining high-level production of low molecular weight proteins in Escherichia coli is described. This method is based on the use of a novel Met-Xaa-protein construction which is formed by insertion of a single amino acid residue (preferably Arginine or Lysine) between the N-terminal methionine and the protein of interest. The utility of this method is illustrated by examples for achieving high-level production of human insulin-like growth factor-1, human proinsulin, and their analogs. Furthermore, highly produced insulin-like growth factor-1 derivatives and human proinsulin analogs are converted to their natural sequences by removal of dipeptides with cathepsin C.  相似文献   

5.
Regulation of protein activity with small-molecule-controlled inteins   总被引:1,自引:0,他引:1  
Inteins are the protein analogs of self-splicing RNA introns, as they post-translationally excise themselves from a variety of protein hosts. Intein insertion abolishes, in general, the activity of its host protein, which is subsequently restored upon intein excision. These protein elements therefore have the potential to be used as general molecular "switches" for the control of arbitrary target proteins. Based on rational design, an intein-based protein switch has been constructed whose splicing activity is conditionally triggered in vivo by the presence of thyroid hormone or synthetic analogs. This modified intein was used in Escherichia coli to demonstrate that a number of different proteins can be inactivated by intein insertion and then reactivated by the addition of thyroid hormone via ligand-induced splicing. This conditional activation was also found to occur in a dose-dependent manner. Rational protein engineering was then combined with genetic selection to evolve an additional intein whose activity is controlled by the presence of synthetic estrogen ligands. The ability to regulate protein function post-translationally through the use of ligand-controlled intein splicing will most likely find applications in metabolic engineering, drug discovery and delivery, biosensing, molecular computation, as well as many additional areas of biotechnology.  相似文献   

6.
Molecular recognition and binding of thermal hysteresis proteins to ice   总被引:5,自引:0,他引:5  
Molecular recognition and binding are two very important processes in virtually all biological and chemical processes. An extremely interesting system involving recognition and binding is that of thermal hysteresis proteins at the ice-water interface. These proteins are of great scientific interest because of their antifreeze activity. Certain fish, insects and plants living in cold weather regions are known to generate these proteins for survival. A detailed molecular understanding of how these proteins work could assist in developing synthetic analogs for use in industry. Although the shapes of these proteins vary from completely alpha-helical to globular, they perform the same function. It is the shapes of these proteins that control their recognition and binding to a specific face of ice. Thermal hysteresis proteins modify the morphology of the ice crystal, thereby depressing the freezing point. Currently there are three hypotheses proposed with respect to the antifreeze activity of thermal hysteresis proteins. From structure-function experiments, ice etching experiments, X-ray structures and computer modeling at the ice-vacuum interface, the first recognition and binding hypothesis was proposed and stated that a lattice match of the ice oxygens with hydrogen-bonding groups on the proteins was important. Additional mutagenesis experiments and computer simulations have lead to the second hypothesis, which asserted that the hydrophobic portion of the amphiphilic helix of the type I thermal hysteresis proteins accumulates at the ice-water interface. A third hypothesis, also based on mutagenesis experiments and computer simulations, suggests that the thermal hysteresis proteins accumulate in the ice-water interface and actually influence the specific ice plane to which the thermal hysteresis protein ultimately binds. The first two hypotheses emphasize the aspect of the protein 'binding or accumulating' to specific faces of ice, while the third suggests that the protein assists in the development of the binding site. Our modeling and analysis supports the third hypothesis, however, the first two cannot be completely ruled out at this time. The objective of this paper is to review the computational and experimental efforts during the past 20 years to elucidate the recognition and binding of thermal hysteresis proteins at the ice-vacuum and ice-water interface.  相似文献   

7.
Zheng A  Li J  Begna D  Fang Y  Feng M  Song F 《PloS one》2011,6(5):e20428
The honeybee pupae development influences its future adult condition as well as honey and royal jelly productions. However, the molecular mechanism that regulates honeybee pupae head metamorphosis is still poorly understood. To further our understand of the associated molecular mechanism, we investigated the protein change of the honeybee pupae head at 5 time-points using 2-D electrophoresis, mass spectrometry, bioinformatics, quantitative real-time polymerase chain reaction and Western blot analysis. Accordingly, 58 protein spots altered their expression across the 5 time points (13-20 days), of which 36 proteins involved in the head organogenesis were upregulated during early stages (13-17 days). However, 22 proteins involved in regulating the pupae head neuron and gland development were upregulated at later developmental stages (19-20 days). Also, the functional enrichment analysis further suggests that proteins related to carbohydrate metabolism and energy production, development, cytoskeleton and protein folding were highly involved in the generation of organs and development of honeybee pupal head. Furthermore, the constructed protein interaction network predicted 33 proteins acting as key nodes of honeybee pupae head growth of which 9 and 4 proteins were validated at gene and protein levels, respectively. In this study, we uncovered potential protein species involved in the formation of honeybee pupae head development along with their specific temporal requirements. This first proteomic result allows deeper understanding of the proteome profile changes during honeybee pupae head development and provides important potential candidate proteins for future reverse genetic research on honeybee pupae head development to improve the performance of related organs.  相似文献   

8.
We analyzed the structural properties of the peptide hormone insulin and described the mechanism of its physiological action, as well as effects of insulin in type 1 and 2 diabetes. Recently published data on the development of novel insulin preparations based on combining molecular design and genetic engineering approaches are presented. New strategies for creation of long-acting insulin analogs, the mechanisms of functioning of these analogs and their structure are discussed. Side effects of insulin preparations are described, including amyloidogenesis and possible mitogenic effect. The pathways for development of novel insulin analogs are outlined with regard to the current requirements for therapeutic preparations due to the wider occurrence of diabetes of both types.  相似文献   

9.
To fulfill its preeminent function of regulating glucose metabolism, insulin secretion must not only be quantitatively appropriate but also have qualitative, dynamic properties that optimize insulin action on target tissues. This review focuses on the importance of the first-phase insulin secretion to glucose metabolism and attempts to illustrate the relationships between the first-phase insulin response to an intravenous glucose challenge and the early insulin response following glucose ingestion. A clear-cut first phase occurs only when the beta-cell is exposed to a rapidly changing glucose stimulus, like the one induced by a brisk intravenous glucose administration. In contrast, peripheral insulin concentration following glucose ingestion does not bear any clear sign of biphasic shape. Coupling data from the literature with the results of a beta-cell model simulation, a close relationship between the first-phase insulin response to intravenous glucose and the early insulin response to glucose ingestion emerges. It appears that the same ability of the beta-cell to produce a pronounced first phase in response to an intravenous glucose challenge can generate a rapidly increasing early phase in response to the blood glucose profile following glucose ingestion. This early insulin response to glucose is enhanced by the concomitant action of incretins and neural responses to nutrient ingestion. Thus, under physiological circumstances, the key feature of the early insulin response seems to be the ability to generate a rapidly increasing insulin profile. This notion is corroborated by recent experimental evidence that the early insulin response, when assessed at the portal level with a frequent sampling, displays a pulsatile nature. Thus, even though the classical first phase does not exist under physiological conditions, the oscillatory behavior identified at the portal level does serve the purpose of rapidly exposing the liver to elevated insulin levels that, also in virtue of their up-and-down pattern, are particularly effective in restraining hepatic glucose production.  相似文献   

10.
Cancer cells are resistant to apoptosis and this is one of the most obvious symptoms of cancer in humans. One of the most exciting strategies for treating cancer is to design regulators that increase cell death and stop cell growth. Members of the BCL-2 family of proteins play an important role in the regulation of apoptosis. In this study, an attempt was made to improve the performance of one of the anticancer drugs by designing new analogs of venetoclax (VNT). For this purpose, molecular docking studies were performed to determine the best binding state of VNT and its newly designed derivatives at the protein-binding site to estimate the binding energy. The best analog in terms of free energy was VNT-12 with the lowest energy (−12.15 kcal/mol). Finally, to investigate the inhibitory effect of the compounds on BCL-2 protein, molecular dynamics simulation was used, and by performing the relevant analyses during the simulation, it was observed that the newly designed ligand had better performance in inhibiting BCL-2 protein compared to VNT.  相似文献   

11.
The sodium “channelopathies” are the first among the ion channel diseases identified and have attracted widespread clinical and scientific interests. Human voltage gated sodium channels are sites of action of several antiarrhythmic drugs, local anesthetics and related antiepileptic drugs. The present study aims to optimize the activity of Disopyramide, by modification in its structures which may improve the drug action by reducing its side effects. Herein, we have selected Human voltage-gated sodium channel protein type 5 as a potent molecular target. Nearly eighty analogs of Disopyramide are designed and optimized. Thirty are selected for energy minimization using Discovery studio and the LigPrep 2.5. Prior to docking, the active sites of all the proteins are identified. The processing, optimization and minimization of all the proteins is done in Protein preparation wizard. The docking study is performed using the GLIDE. Finally top five ranked lead molecules with better dock scores are identified as having strong binding affinity to 2KAV protein than Disopyramide based on XP G scores. These five leads are further docked with other similar voltage gated sodium channel proteins (PDB IDs: 2KBI, 4DCK, 2L53 and 4DJC) and the best scoring analog with each protein is identified. Drug likeliness and comparative bioactivity analysis for all the analogs is done using QikProp 3.4. Results have shown that the top five lead molecules would have the potential to act as better drugs as compared to Disopyramide and would be of interest as promising starting point for designing compounds against various Sodium channelopathies.  相似文献   

12.
The use of privileged scaffolds has proven beneficial for generating novel bioactive scaffolds in drug discovery program. Chromone is one such privileged scaffold that has been exploited for designing pharmacologically active analogs. The molecular hybridization technique combines the pharmacophoric features of two or more bioactive compounds to avail a better pharmacological activity in the resultant hybrid analogs. The current review summarizes the rationale and techniques involved in developing hybrid analogs of chromone, which show potential in fields of obesity, diabetes, cancer, Alzheimer's disease and microbial infections. Here the molecular hybrids of chromone with various pharmacologically active analogs or fragments (donepezil, tacrine, pyrimidines, azoles, furanchalcones, hydrazones, quinolines, etc.) are discussed with their structure-activity relationship against above-mentioned diseases. Detailed methodologies for the synthesis of corresponding hybrid analogs have also been described, with suitable synthetic schemes. The current review will shed light on various strategies utilized for the design of hybrid analogs in the field of drug discovery. The importance of hybrid analogs in various disease conditions is also illustrated.  相似文献   

13.
The epidermal growth factor receptor (EGFR) is part of an extended family of proteins that together control aspects of cell growth and development, and thus a validated target for drug discovery. We explore in this work the suitability of a molecular dynamics-based end-point binding free energy protocol to estimate the relative affinities of a virtual combinatorial library designed around the EGFR model inhibitor 6{1} as a tool to guide chemical synthesis toward the most promising compounds. To investigate the validity of this approach, selected analogs including some with better and worse predicted affinities relative to 6{1} were synthesized, and their biological activity determined. To understand the binding determinants of the different analogs, hydrogen bonding and van der Waals contributions, and water molecule bridging in the EGFR–analog complexes were analyzed. The experimental validation was in good qualitative agreement with our theoretical calculations, while also a 6-dibromophenyl-substituted compound with enhanced inhibitory effect on EGFR compared to the reference ligand was obtained.  相似文献   

14.
Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non‐covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra‐chain bond in the A‐chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four‐disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The recently proposed concept of molecular connectivity maps enables researchers to integrate experimental measurements of genes, proteins, metabolites, and drug compounds under similar biological conditions. The study of these maps provides opportunities for future toxicogenomics and drug discovery applications. We developed a computational framework to build disease-specific drug-protein connectivity maps. We integrated gene/protein and drug connectivity information based on protein interaction networks and literature mining, without requiring gene expression profile information derived from drug perturbation experiments on disease samples. We described the development and application of this computational framework using Alzheimer''s Disease (AD) as a primary example in three steps. First, molecular interaction networks were incorporated to reduce bias and improve relevance of AD seed proteins. Second, PubMed abstracts were used to retrieve enriched drug terms that are indirectly associated with AD through molecular mechanistic studies. Third and lastly, a comprehensive AD connectivity map was created by relating enriched drugs and related proteins in literature. We showed that this molecular connectivity map development approach outperformed both curated drug target databases and conventional information retrieval systems. Our initial explorations of the AD connectivity map yielded a new hypothesis that diltiazem and quinidine may be investigated as candidate drugs for AD treatment. Molecular connectivity maps derived computationally can help study molecular signature differences between different classes of drugs in specific disease contexts. To achieve overall good data coverage and quality, a series of statistical methods have been developed to overcome high levels of data noise in biological networks and literature mining results. Further development of computational molecular connectivity maps to cover major disease areas will likely set up a new model for drug development, in which therapeutic/toxicological profiles of candidate drugs can be checked computationally before costly clinical trials begin.  相似文献   

16.
Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native dot blot and denaturing Western blot assays. Although neither protein bound to heparin, gelatin, hexosamine, or uronic acid-Sepharose resins, their affinity for an invertebrate proteoglycan, their roles in sponge cell adhesion, and their peripheral membrane protein natures suggest that they may represent early invertebrate analogs of cell-associated vertebrate extracellular matrix adhesion proteins, such as fibronectin or vitronectin, or else an entirely novel set of cell adhesion molecules.  相似文献   

17.
Enzymuria and specific proteinuria were examined over a period of 19 days in 4 groups of 5 rats: a control group, a nondiabetic polyuric group, a group of streptozotocin-induced diabetic rats treated with insulin as of the 10th day after the injection of the drug, and a similar group of untreated diabetic rats. Increased urinary excretion of beta-N-acetyl-D-glucosaminidase, lactate dehydrogenase, and alanine aminopeptidase was observed shortly after the induction of diabetes. It was partly or totally reversible following insulin treatment. Nondiabetic polyuria had a slight effect on the excretion of alanine aminopeptidase only. The urinary excretion of beta 2-microglobulin also rapidly increased after the onset of diabetes to a level approximately 50 times the control values. This effect was largely reversible with insulin treatment and was absent in the nondiabetic polyuric group. A small but significant 3-fold increase in albumin excretion was also noted but was not affected by insulin treatment. We conclude that streptozotocin-induced diabetes causes an early tubular dysfunction that is unrelated to polyuria and is reversible upon insulin treatment. This tubular dysfunction is best revealed by the urinary excretion of the low molecular weight protein beta 2-microglobulin. Our results suggest that it would be of interest to further examine the usefulness of sensitive markers of tubular dysfunction, especially low molecular weight proteinuria, in the detection of early stages of diabetic nephropathy.  相似文献   

18.
Kondo T 《Plant physiology》1989,90(4):1600-1608
Phase shifts of the circadian rhythm of K+ uptake by Lemna gibba G3, caused by pulse administration of various amino acids analogs, were examined and compared. The various phase shifts were not due to any disturbance in the biosynthesis of amino acids, since the effective time of day and direction of the phase shift caused by analogs were not correlated with the standard amino acid which was modified. Effective analogs could be classified into three groups. The first group was effective during the middle subjective day and caused both advances and delays in phase. The second group was effective early in the subjective night, causing large delays and small phase advance. Analogs in the third group shifted the phase as did cycloheximide and were effective at the subjective dawn. Since the analogs of the third group were known to inhibit protein synthesis, it is likely that they shift the phase by lowering the level of some protein(s) important for the clock. By contrast, since the analogs in groups 1 and 2 are known to generate abnormal proteins, the different phase-shifting patterns caused by analogs in groups 1 and 2 suggest that at least two other proteins are important for the circadian timing loop. The amino acid analogs shift the phase as a result of their incorporation into these proteins instead of the standard amino acid. This probably alters the structure and/or activities of these proteins.  相似文献   

19.
Fatty acid transport proteins   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Fatty acid transport proteins are a family of proteins involved in fatty acid uptake and activation. This review summarizes recent progress in elucidating the function of fatty acid transport proteins. RECENT FINDINGS: Recent experiments clearly establish FATP1 as a regulated fatty acid transporter in both adipose tissue and muscle with important roles in energy homeostasis, thermogenesis and insulin resistance. Knockout of FATP5 in mice show it to be a bifunctional protein required for both hepatic fatty acid uptake and bile acid reconjugation. The most striking phenotype of FATP4 deletion is a defect in skin homeostasis, which may be due to its very long chain acyl-coenzyme A synthetase activity. Fatty acid transport proteins are increasingly being recognized as multifunctional proteins that can mediate the uptake of fatty acids as well as catalyze the formation of coenzyme A derivatives using long-chain and very-long chain fatty acids, bile acids and bile acid precursors as substrates. SUMMARY: Modulation of fatty acid transport protein function can result in altered energy homeostasis and insulin sensitivity, defective skin homeostasis, and altered bile acid metabolism. Both fatty acid uptake and enzymatic activity of fatty acid transport proteins likely contribute to these phenotypes. Future studies are needed to better understand the molecular mechanism of fatty acid transport protein function and the physiological role of FATP2, FATP3, and FATP6.  相似文献   

20.
In pharmacology, it is essential to identify the molecular mechanisms of drug action in order to understand adverse side effects. These adverse side effects have been used to infer whether two drugs share a target protein. However, side-effect similarity of drugs could also be caused by their target proteins being close in a molecular network, which as such could cause similar downstream effects. In this study, we investigated the proportion of side-effect similarities that is due to targets that are close in the network compared to shared drug targets. We found that only a minor fraction of side-effect similarities (5.8 %) are caused by drugs targeting proteins close in the network, compared to side-effect similarities caused by overlapping drug targets (64%). Moreover, these targets that cause similar side effects are more often in a linear part of the network, having two or less interactions, than drug targets in general. Based on the examples, we gained novel insight into the molecular mechanisms of side effects associated with several drug targets. Looking forward, such analyses will be extremely useful in the process of drug development to better understand adverse side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号