首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellulolytic complex was isolated from the culture supernatant of Ruminococcus albus strain F-40 grown on cellulose by a Sephacryl S-300HR column chromatography. The molecular mass of the cellulolytic complex was found to be larger than 1.5 x 10(6) Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the cellulolytic complex contained at least 15 proteins with molecular weights from 40kDa to 250 kDa. Among them, 11 proteins showed endoglucanase and/or xylanase activities on the zymograms. Immunological analysis using an antiserum raised against the dockerin domain of endoglucanase VII of R. albus (DocVII) suggested that at least 7 proteins in the cellulolytic complex contained a dockerin domain immunoreactive with the anti-Doc-VII antiserum. Furthermore, DocVII was shown to specifically interact with a 40-kDa protein of the cellulolytic complex by Far-Western blot analysis. These results strongly suggest that the cellulolytic complex produced by R. albus resembles the cellulosome specified for the cellulolytic complex of several clostridia such as Clostridium thermocellum and respective components are assembled into the cellulosome by the mechanism common in all of the cellulolytic clostridia, i.e., the cellulosome is formed by the interaction between a dockerin domain of catalytic components and a cohesin domain of a scaffolding protein.  相似文献   

2.
An EcoRI chromosomal DNA fragment of Ruminococcus albus F-40 that conferred endoglucanase activity on Escherichia coli was cloned. An open reading frame (ORF1) and another incomplete reading frame (ORF2) were found in the EcoRI fragment. The ORF2 was completed using inverse PCR genome walking technique. ORF1 and ORF2, which confront each other, encoded cellulases belonging to families 5 and 9 of the glycoside hydrolases and were designated cel5D and cel9A respectively. The cel5D gene encodes 753 amino acids with a deduced molecular weight of 83,409. Cel5D consists of a signal peptide of 24 amino acids, a family-5 catalytic module, a dockerin module, and two family-4 carbohydrate-binding modules (CBMs). The cel9A gene encodes 936 amino acids with a deduced molecular weight of 104,174, consisting of a signal peptide, a family-9 catalytic module, a family-3 CBM, and a dockerin module. The catalytic module polypeptide (rCel5DCat) derived from Cel5D was constructed, expressed, and purified from a recombinant E. coli. The truncated enzyme hydrolyzed cellohexaose, cellopentaose, and cellotetraose to yield mainly cellotriose and cellobiose with glucose as a minor product, but the enzyme was less active toward cellotriose and not active toward cellobiose, suggesting that this enzyme is a typical endoglucanase. rCel5DCat had a Km of 3.9 mg/ml and a Vmax of 37.2 micromol/min/mg for carboxymethycellulose.  相似文献   

3.
The cellulolytic complex was isolated from the culture supernatant of Ruminococcus albus strain F-40 grown on cellulose by a Sephacryl S-300HR column chromatography. The molecular mass of the cellulolytic complex was found to be larger than 1.5×106 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the cellulolytic complex contained at least 15 proteins with molecular weights from 40 kDa to 250 kDa. Among them, 11 proteins showed endoglucanase and/or xylanase activities on the zymograms. Immunological analysis using an antiserum raised against the dockerin domain of endoglucanase VII of R. albus (DocVII) suggested that at least 7 proteins in the cellulolytic complex contained a dockerin domain immunoreactive with the anti-DocVII antiserum. Furthermore, DocVII was shown to specifically interact with a 40-kDa protein of the cellulolytic complex by Far-Western blot analysis. These results strongly suggest that the cellulolytic complex produced by R. albus resembles the cellulosome specified for the cellulolytic complex of several clostridia such as Clostridium thermocellum and respective components are assembled into the cellulosome by the mechanism common in all of the cellulolytic clostridia, i.e., the cellulosome is formed by the interaction between a dockerin domain of catalytic components and a cohesin domain of a scaffolding protein.  相似文献   

4.
The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.  相似文献   

5.
The nucleotide sequence of the Clostridium thermocellum F1 xynC gene, which encodes the xylanase XynC, consists of 1,857 bp and encodes a protein of 619 amino acids with a molecular weight of 69,517. XynC contains a typical N-terminal signal peptide of 32 amino acid residues, followed by a 165-amino-acid sequence which is homologous to the thermostabilizing domain. Downstream of this domain was a family 10 catalytic domain of glycosyl hydrolase. The C terminus separated from the catalytic domain by a short linker sequence contains a dockerin domain responsible for cellulosome assembly. The N-terminal amino acid sequence of XynC-II, the enzyme purified from a recombinant Escherichia coli strain, was in agreement with that deduced from the nucleotide sequence although XynC-II suffered from proteolytic truncation by a host protease(s) at the C-terminal region. Immunological and N-terminal amino acid sequence analyses disclosed that the full-length XynC is one of the major components of the C. thermocellum cellulosome. XynC-II was highly active toward xylan and slightly active toward p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-cellobioside, p-nitrophenyl-beta-D-glucopyranoside, and carboxymethyl cellulose. The Km and Vmax values for xylan were 3.9 mg/ml and 611 micromol/min/mg of protein, respectively. This enzyme was optimally active at 80 degrees C and was stable up to 70 degrees C at neutral pHs and over the pH range of 4 to 11 at 25 degrees C.  相似文献   

6.
The recombinant form of the cellulase CelF of Clostridium cellulolyticum, tagged by a C-terminal histine tail, was overproduced in Escherichia coli. The fusion protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The intact form of CelF (Mr, 79,000) was rapidly degraded at the C terminus, giving a shorter stable form, called truncated CelF (Mr, 71,000). Both the entire and the truncated purified forms degraded amorphous cellulose (kcat = 42 and 30 min(-1), respectively) and microcrystalline cellulose (kcat = 13 and 10 min(-1), respectively). The high ratio of soluble reducing ends to insoluble reducing ends released by truncated CelF from amorphous cellulose showed that CelF is a processive enzyme. Nevertheless, the diversity of the cellodextrins released by truncated CelF from phosphoric acid-swollen cellulose at the beginning of the reaction indicated that the enzyme might randomly hydrolyze beta-1,4 bonds. This hypothesis was supported by viscosimetric measurements and by the finding that CelF and the endoglucanase CelA are able to degrade some of the same cellulose sites. CelF was therefore called a processive endocellulase. The results of immunoblotting analysis showed that CelF was associated with the cellulosome of C. cellulolyticum. It was identified as one of the three major components of cellulosomes. The ability of the entire form of CelF to interact with CipC, the cellulosome integrating protein, or mini-CipC1, a recombinant truncated form of CipC, was monitored by interaction Western blotting (immunoblotting) and by binding assays using a BIAcore biosensor-based analytical system.  相似文献   

7.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   

8.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   

9.
10.
11.
Sequence analysis of a Paenibacillus sp. BP-23 recombinant clone coding for a previously described endoglucanase revealed the presence of an additional truncated ORF with homology to family 48 glycosyl hydrolases. The corresponding 3509-bp DNA fragment was isolated after gene walking and cloned in Escherichia coli Xl1-Blue for expression and purification. The encoded enzyme, a cellulase of 1091 amino acids with a deduced molecular mass of 118 kDa and a pI of 4.85, displayed a multidomain organization bearing a canonical family 48 catalytic domain, a bacterial type 3a cellulose-binding module, and a putative fibronectin-III domain. The cloned cellulase, unique among Bacillales and designated Cel48C, was purified through affinity chromatography using its ability to bind Avicel. Maximum activity was achieved at 45 degrees C and pH 6.0 on acid-swollen cellulose, bacterial microcrystalline cellulose, Avicel and cellodextrins, whereas no activity was found on carboxy methyl cellulose, cellobiose, cellotriose, pNP-glycosides or 4-methylumbeliferyl alpha-d-glucoside. Cellobiose was the major product of cellulose hydrolysis, identifying Cel48C as a processive cellobiohydrolase. Although no chromogenic activity was detected from pNP-glycosides, TLC analysis revealed the release of p-nitrophenyl-glycosides and cellodextrins from these substrates, suggesting that Cel48C acts from the reducing ends of the sugar chain. Presence of such a cellobiohydrolase in Paenibacillus sp. BP-23 would contribute to widen up its range of action on natural cellulosic substrates.  相似文献   

12.
The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945-1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex.  相似文献   

13.
A gene encoding cobalamin-dependent methionine synthase (EC 2.1.1.13) has been isolated from a plasmid library of Escherichia coli K-12 DNA by complementation to methionine prototrophy in an E. coli strain lacking both cobalamin-dependent and -independent methionine synthase activities (RK4536:metE, metHH). Maxicell expression of a series of plasmids containing deletions in the metH structural gene was employed to map the position and orientation of the gene on the cloned DNA fragment. A 6.3-kilobase EcoRI-SalI fragment containing the gene was cloned into the sequencing vector pGEM3B for double-stranded DNA sequencing; the MetH coding region consists of 3372 nucleotides. The enzyme was purified from an overproducing strain of E. coli harboring the recombinant plasmid, in which the level of methionine synthase was elevated 30- to 40-fold over wild-type E. coli. Recombinant enzyme is a protein of 123,640 molecular weight and has a turnover number of 1,450 min-1 in the standard assay. These values are to be compared with previously reported values of 133,000 for the molecular weight and 1,240-1,560 min-1 for the turnover number of the homogenous enzyme purified from a wild-type strain of E. coli B (Frasca, V., Banerjee, R. V., Dunham, W. R., Sands, R. H., and Matthews, R. G. (1988) Biochemistry 27, 8458-8465). Limited proteolysis of the native enzyme with trypsin resulted in loss of enzyme activity but retention of bound cobalamin on a peptide fragment of 28,000 molecular weight. This fragment has been shown to extend from residue 643 to residue 900 of the 1124-residue deduced amino acid sequence.  相似文献   

14.
Bacteroides ruminicola B(1)4, a noncellulolytic rumen bacterium, produces an endoglucanase (carboxymethylcellulase [CMCase]) that is excreted into the culture supernatant. Cultures grown on glucose, fructose, maltose, mannose, and cellobiose had high specific activities of CMCase (greater than 3 mmol of reducing sugar per mg of protein per min), but its synthesis was repressed by sucrose. B. rumincola did not grow on either ball-milled or acid-swollen cellulose even though the CMCase could hydrolyze swollen cellulose. The CMCase gene was cloned into Escherichia coli, and its nucleotide sequence contained a single open reading frame coding for a protein of 40,481 daltons. The enzyme was overproduced in E. coli under the control of the tac promoter and purified to homogeneity. The N-terminal sequence, amino acid composition, and molecular weight of the purified enzyme were similar to the values predicted from the open reading frame of the DNA sequence. However, the CMCase present in B. ruminicola was found to have a monomer molecular weight of 88,000 by Western immunoblotting. This discrepancy appeared to have resulted from our having cloned only part of the CMCase gene into E. coli. The amino acid sequence of the CMCase showed homology to sequences of beta-glucanases from Ruminococcus albus and Clostridium thermocellum.  相似文献   

15.
Two tandem cellulosome-associated genes were identified in the cellulolytic rumen bacterium, Ruminococcus flavefaciens. The deduced gene products represent multimodular scaffoldin-related proteins (termed ScaA and ScaB), both of which include several copies of explicit cellulosome signature sequences. The scaB gene was completely sequenced, and its upstream neighbor scaA was partially sequenced. The sequenced portion of scaA contains repeating cohesin modules and a C-terminal dockerin domain. ScaB contains seven relatively divergent cohesin modules, two extremely long T-rich linkers, and a C-terminal domain of unknown function. Collectively, the cohesins of ScaA and ScaB are phylogenetically distinct from the previously described type I and type II cohesins, and we propose that they define a new group, which we designated here type III cohesins. Selected modules from both genes were overexpressed in Escherichia coli, and the recombinant proteins were used as probes in affinity-blotting experiments. The results strongly indicate that ScaA serves as a cellulosomal scaffoldin-like protein for several R. flavefaciens enzymes. The data are supported by the direct interaction of a recombinant ScaA cohesin with an expressed dockerin-containing enzyme construct from the same bacterium. The evidence also demonstrates that the ScaA dockerin binds to a specialized cohesin(s) on ScaB, suggesting that ScaB may act as an anchoring protein, linked either directly or indirectly to the bacterial cell surface. This study is the first direct demonstration in a cellulolytic rumen bacterium of a cellulosome system, mediated by distinctive cohesin-dockerin interactions.  相似文献   

16.
The man26B gene of Clostridium thermocellum strain F1 was found in pKS305, which had been selected as a recombinant plasmid conferring endoglucanase activity on Escherichia coli. The open reading frame of man26B consists of 1,773 nucleotides encoding a protein of 591 amino acids with a predicted molecular weight of 67,047. Man26B is a modular enzyme composed of an N-terminal signal peptide and three domains in the following order: a mannan-binding domain, a family 26 mannanase domain, and a dockerin domain responsible for cellulosome assembly. We found that this gene was a homologue of the man26A gene of C. thermocellum strain YS but that there were insertion or deletion mutations that caused a frame-shift mutation affecting a stretch of 26 amino acids in the catalytic domain. Man26B devoid of the dockerin domain was constructed and purified from a recombinant E. coli, and its enzyme properties were examined. Immunological analysis indicated that Man26B was a catalytic component of the C. thermocellum F1 cellulosome.  相似文献   

17.
E Morag  I Halevy  E A Bayer    R Lamed 《Journal of bacteriology》1991,173(13):4155-4162
In the anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum, efficient solubilization of the insoluble cellulose substrate is accomplished largely through the action of a cellulose-binding multienzyme complex, the cellulosome. A major cellobiohydrolase activity from the cellulosome has been traced to its Mr 75,000 S8 subunit, and an active fragment of this subunit was prepared by a novel procedure involving limited proteolytic cleavage. The truncated Mr 68,000 fragment, termed S8-tr, was purified by gel filtration and high-performance ion-exchange chromatography. The purified protein adsorbed weakly to amorphous cellulose, and its enzymatic action yielded cellobiose as the major end product from both amorphous and crystalline cellulose preparations. The high ratio of exo- to endo-beta-glucanase activities was supported by viscosimetric measurements. The use of model substrates showed that the smallest cellodextrin to be degraded was cellotetraose, but cellopentaose was degraded at a much greater rate. Cellobiose dramatically inhibited the cellulolytic activities. In the absence of calcium or other bivalent metal ions, both the truncated cellobiohydrolase activity of S8-tr and the true cellulase activity of the parent cellulosome were relatively unstable at temperatures above 50 degrees C. Cysteine further enhanced the stabilizing effect of calcium. This is the first report of a defined cellobiohydrolase in C. thermocellum. Its association with the cellulosome and the correspondence of several of their major distinctive properties suggest that this cellobiohydrolase plays a key role in the solubilization of cellulose by the intact cellulosomal complex.  相似文献   

18.
CelE, one of the three major proteins of the cellulosome of Clostridium cellulolyticum, was characterized. The amino acid sequence of the protein deduced from celE DNA sequence led us to the supposition that CelE is a three-domain protein. Recombinant CelE and a truncated form deleted of the putative cellulose binding domain (CBD) were obtained. Deletion of the CBD induces a total loss of activity. Exhibiting rather low levels of activity on soluble, amorphous, and crystalline celluloses, CelE is more active on p-nitrophenyl-cellobiose than the other cellulases from this organism characterized to date. The main product of its action on Avicel is cellobiose (more than 90% of the soluble sugars released), and its attack on carboxymethyl cellulose is accompanied by a relatively small decrease in viscosity. All of these features suggest that CelE is a cellobiohydrolase which has retained a certain capacity for random attack mode. We measured saccharification of Avicel and bacterial microcrystalline cellulose by associations of CelE with four other cellulases from C. cellulolyticum and found that CelE acts synergistically with all tested enzymes. The positive influence of CelE activity on the activities of other cellulosomal enzymes may explain its relative abundance in the cellulosome.  相似文献   

19.
The celT gene of Clostridium thermocellum strain F1 was found downstream of the mannanase gene man26B [Kurokawa J et al. (2001) Biosci Biotechnol Biochem 65:548–554] in pKS305. The open reading frame of celT consists of 1,833 nucleotides encoding a protein of 611 amino acids with a predicted molecular weight of 68,510. The mature form of CelT consists of a family 9 cellulase domain and a dockerin domain responsible for cellulosome assembly, but lacks a family 3c carbohydrate-binding module (CBM) and an immunoglobulin (Ig)-like domain, which are often found with family 9 catalytic domains. CelT devoid of the dockerin domain (CelTΔdoc) was constructed and purified from a recombinant Escherichia coli, and its enzyme properties were examined. CelTΔdoc showed strong activity toward carboxymethylcellulose (CMC) and barley β-glucan, and low activity toward xylan. The V max and K m values were 137 μmol min–1 mg–1 and 16.7 mg/ml, respectively, for CMC. Immunological analysis indicated that CelT is a catalytic component of the C. thermocellum F1 cellulosome. This is the first report describing the characterization of a family 9 cellulase without an Ig-like domain or family 3c CBM. Electronic Publication  相似文献   

20.
The 3' region of a gene designated cipB, which shows strong homology with cipA that encodes the cellulosome SL subunit of Clostridium thermocellum ATCC 27405, was isolated from a gene library of C. thermocellum strain YS. The truncated S1 protein encoded by the cipB derivative bound tightly to cellulose. The cellulose-binding domain in this polypeptide consisted of a C-terminal proximal 167 residue sequence which showed complete identity with residues 337-503 of mature SL from C. thermocellum strain ATCC 27405. The cellulose-binding domain interacted with both crystalline and amorphous cellulose, but not with xylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号