首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of ahpC2 encoding an alkyl hydroperoxide reductase of Vibrio vulnificus, a foodborne pathogen, was incrementally induced depending on NaCl concentrations in the culture. Growth of the ahpC2 mutant was significantly impaired with longer lag phase and lower growth rate when cultured under high salinity. ROS was accumulated in V. vulnificus cells when stressed by exposure to high salinity, and the ahpC2 mutant accumulated higher level of ROS as compared with the parental wild type. Consequently, the combined results suggest that AhpC2 contributes to the growth of V. vulnificus under high salinity by scavenging ROS in cells.  相似文献   

2.
Alkyl hydroperoxide reductase subunit C gene (ahpC) functions were characterized in Vibrio parahaemolyticus, a commonly occurring marine food-borne enteropathogenic bacterium. Two ahpC genes, ahpC1 (VPA1683) and ahpC2 (VP0580), encoded putative two-cysteine peroxiredoxins, which are highly similar to the homologous proteins of Vibrio vulnificus. The responses of deletion mutants of ahpC genes to various peroxides were compared with and without gene complementation and at different incubation temperatures. The growth of the ahpC1 mutant and ahpC1 ahpC2 double mutant in liquid medium was significantly inhibited by organic peroxides, cumene hydroperoxide and tert-butyl hydroperoxide. However, inhibition was higher at 12°C and 22°C than at 37°C. Inhibiting effects were prevented by the complementary ahpC1 gene. Inconsistent detoxification of H2O2 by ahpC genes was demonstrated in an agar medium but not in a liquid medium. Complementation with an ahpC2 gene partially restored the peroxidase effect in the double ahpC1 ahpC2 mutant at 22°C. This investigation reveals that ahpC1 is the chief peroxidase gene that acts against organic peroxides in V. parahaemolyticus and that the function of the ahpC genes is influenced by incubation temperature.  相似文献   

3.
4.
Vibrio vulnificus, a highly virulent marine bacterium, is the causative agent of both serious wound infections and fatal septicemia in many areas of the word. A gene (hlyIII) encoding a hemolysin was cloned and sequenced from V. vulnificus. Nucleotide sequence analysis predicted an open reading frame of 642 bp encoding a 214 amino acid polypeptide that showed 48% sequence identity to the hemolysin III of Bacillus cereus. When HlyIII of V. vulnificus was expressed in Escherichia coli, crude extracts exhibited hemolytic activity similar to that of hemolysin III from Bacillus cereus. A hlyIII isogenic mutant was constructed via insertional inactivation and showed an attenuated virulence compared with the wild-type strain when this mutant was administered intraperitoneally in mice.  相似文献   

5.
Vibrio vulnificus is an estuarine bacterium capable of causing rapidly fatal infections through both ingestion and wound infection. Like other opportunistic pathogens, V. vulnificus must adapt to potentially stressful environmental changes while living freely in seawater, upon colonization of the oyster gut, and upon infection of such diverse hosts as humans and eels. In order to begin to understand the ability of V. vulnificus to respond to such stresses, we examined the role of the alternate sigma factor RpoS, which is important in stress response and virulence in many pathogens. An rpoS mutant of V. vulnificus strain C7184o was constructed by homologous recombination. The mutant strain exhibited a decreased ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and acidic conditions. The most striking difference was a high sensitivity of the mutant to hydrogen peroxide. Albuminase, caseinase, and elastase activity were detected in the wild type but not in the mutant strain, and an additional two hydrolytic activities (collagenase and gelatinase) were reduced in the mutant strain compared to the wild type. Additionally, the motility of the rpoS mutant was severely diminished. Overall, these studies suggest that rpoS in V. vulnificus is important for adaptation to environmental changes and may have a role in virulence.  相似文献   

6.
7.
Recent studies have defined several virulence factors as vaccine candidates against Vibrio vulnificus. However, most of these factors have the potential to cause pathogenic effects in the vaccinees or induce incomplete protection. To overcome these drawbacks, a catalytically inactive form, CPDVv(C3725S), of the well‐conserved cysteine protease domain (CPD) of V. vulnificus multifunctional autoprocessing repeats‐in‐toxin (MARTXVv/RtxA1) was recombinantly generated and characterized. Notably, active and passive immunization with CPDVv(C3725S) conferred protective immunity against V. vulnificus strains. These results may provide a novel framework for developing safe and efficient subunit vaccines and/or therapeutics against V. vulnificus that target the CPD of MARTX toxins.  相似文献   

8.
Proteomic analysis led to identification of the proteins of Vibrio vulnificus that were induced upon exposure to INT-407 cells, and 7 of which belong to the functional categories such as amino acid transport/metabolism, nucleotide transport/metabolism, posttranslational modification/protein turnover/chaperones, and translation. Among the genes encoding the host-induced proteins, disruption of purH, trpD, tsaA, and groEL2 resulted in reduced cytotoxicity. The purH, trpD, and tsaA mutants showed impaired growth in the INT-407 lysate; however, the growth rate of the groEL2 mutant was not significantly changed, indicating that the possible roles of the host-induced proteins in the virulence of V. vulnificus are rather versatile.  相似文献   

9.
10.
11.
Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free cultures of mutant and wild-type Desulfovibrio vulgaris (105–106 colony-forming units/ml) were treated with 0 to 2,500 μM H2O2 for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 μM H2O2, respectively, indicating the latter to be 4.6-fold more resistant to killing by H2O2 under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 μM H2O2) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance of the perR mutant increased less (4.6-fold; 50% killing at 1230 μM H2O2), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 μM H2O2 for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O2 effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H2O2 stress only following pretreatment with air.  相似文献   

12.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that can survive and replicate within macrophages. One of the host defense mechanisms that Salmonella encounters during infection is the production of reactive oxygen species by the phagocyte NADPH oxidase. Among them, hydrogen peroxide (H2O2) can diffuse across bacterial membranes and damage biomolecules. Genome analysis allowed us to identify five genes encoding H2O2 degrading enzymes: three catalases (KatE, KatG, and KatN) and two alkyl hydroperoxide reductases (AhpC and TsaA). Inactivation of the five cognate structural genes yielded the HpxF mutant, which exhibited a high sensitivity to exogenous H2O2 and a severe survival defect within macrophages. When the phagocyte NADPH oxidase was inhibited, its proliferation index increased 3.7-fold. Moreover, the overexpression of katG or tsaA in the HpxF background was sufficient to confer a proliferation index similar to that of the wild type in macrophages and a resistance to millimolar H2O2 in rich medium. The HpxF mutant also showed an attenuated virulence in a mouse model. These data indicate that Salmonella catalases and alkyl hydroperoxide reductases are required to degrade H2O2 and contribute to the virulence. This enzymatic redundancy highlights the evolutionary strategies developed by bacterial pathogens to survive within hostile environments.Salmonella is a facultative intracellular pathogen that is associated with gastroenteritis, septicemia, and typhoid fever. This gram-negative bacterium survives and replicates in macrophages during the course of infection and can be exposed to a number of stressful environments during its life cycle (16). One of the host defense mechanisms that Salmonella encounters upon infection is the production of superoxide anion O2 by the phagocyte NADPH oxidase (1, 25). This radical can pass the outer membrane of the bacteria and represents one of the major weapons used by the macrophage to kill engulfed pathogens (18). Evidence that phagocyte-produced superoxide is a key mechanism for avoiding Salmonella infection is clear: mice and humans who are genetically defective in superoxide production are significantly more susceptible to infection (36, 38). Superoxide dismutases, located in the bacterial periplasm and in the cytoplasm, dismutate superoxide O2 to hydrogen peroxide H2O2 and molecular oxygen. Unlike superoxide, hydrogen peroxide can diffuse readily across bacterial membranes and form HO hydroxyl radicals in the presence of Fe(II) (18). These reactive oxygen species (ROS) can oxidize and damage proteins, nucleic acids, and cell membranes.To scavenge and degrade H2O2 molecules generated either as a by-product of aerobic metabolism or by the phagocyte NADPH oxidase, Salmonella has evolved numerous defense mechanisms. The KatE and KatG catalases are involved in H2O2 degradation, with katE being described as a member of the RpoS regulon (17, 22) and katG being OxyR dependent (26, 39). Both enzymes share the ability to reduce hydrogen peroxide to water and molecular oxygen, and their role was shown to be predominant at millimolar concentrations of H2O2 since they do not require any reductant (32). This observation is of particular importance, since these enzymes are not limited by the availability of a reductant, such as NADH, which cannot be generated fast enough to face a burst of H2O2. However, the katG and katE simple mutants, as well as the katE katG double mutant, did not show any increased susceptibility in macrophage or virulence attenuation in mice (5, 27). A possible reason could be the presence of a third nonheme and manganese-dependent catalase called KatN (30). This enzyme may contribute to hydrogen peroxide resistance under certain environmental conditions, but its involvement in virulence remains unknown. Moreover, katE, katG, and katN single mutants did not show any susceptibility to exogenous millimolar H2O2, essentially due to the compensatory function of the remaining catalases (5, 30).Another family of enzymes was shown to play an alternative role in H2O2 scavenging: the alkyl hydroperoxide reductases. These proteins directly convert organic hydroperoxides to alcohols, e.g., hydrogen peroxide to water. The alkyl hydroperoxide reductase AhpC belongs to the two-cysteine peroxiredoxin family, and the gene encoding this enzyme was identified as a member of the OxyR regulon (26, 39). The redox system consists of two proteins, AhpC and AhpF, with the latter being a thioredoxin reductase-like protein that contains two disulfide centers and transfers electrons from NADH to AhpC (13). AhpC was shown to be a predominant scavenger at low concentrations of H2O2, mainly because its catalytic efficiency was better than those of catalases (32). Recently the alkyl hydroperoxide reductase from Helicobacter hepaticus, TsaA (Thiol-Specific Antioxidant), was characterized (24). The tsaA mutant was found to be more sensitive to oxidizing agents like superoxide anion or t-butyl hydroperoxide. Surprisingly, this mutant was more resistant than the wild-type to H2O2, essentially because the level of catalase was increased in this background (24). In gastric pathogens, TsaA plays a critical role in the defense against oxygen toxicity that is essential for survival and growth (2). Interestingly, Salmonella contains two genes encoding alkyl hydroperoxide reductases, ahpC and tsaA, whereas a single copy was found in Escherichia coli (ahpC) or in Helicobacter pylori (tsaA).The redundancy of these antioxidant proteins could explain the extremely high resistance of Salmonella to hydrogen peroxide. It has been shown by Imlay and coworkers that in E. coli, three genes were involved in H2O2 scavenging: two catalase genes (katE and katG) and an alkyl hydroperoxide reductase gene (ahpC) (32). Simultaneous inactivation of the katE, katG, and ahpCF genes negated H2O2 degradation. As a consequence, this triple mutant, called the Hpx mutant, accumulates intracellular H2O2 (32). Moreover, H2O2 generated by aerobic metabolism was found to be sufficient to create toxic levels of DNA damage in such a background (28). In the present study, we deleted the Salmonella katE, katG, and ahpCF genes and two more genes absent in E. coli, katN and tsaA, to obtain the HpxF mutant, which lacks three catalases and two alkyl hydroperoxide reductases. HpxF cells exhibited the incapacity to degrade micromolar concentrations of H2O2, whereas this phenotype was not observed for the Kat (katE katG katN) and Ahp (ahpCF tsaA) mutants. Therefore, the HpxF mutant exhibited a high sensitivity to this compound. Moreover, this mutant did not show any proliferation within macrophages and presented reduced virulence in mice, suggesting that Salmonella catalases and alkyl hydroperoxide reductases form a redundant antioxidant arsenal essential for survival and replication within host cells.  相似文献   

13.
A mutant exhibiting decreased cytotoxic activity toward INT-407 intestinal epithelial cells and carrying a mutation in the rtx gene cluster that consists of rtxCA and rtxBDE operons was screened from a library of V. vulnificus mutants. The functions of the rtxA gene, assessed by constructing an isogenic mutant and evaluating its phenotypic changes, demonstrated that RtxA is essential for the virulence of V. vulnificus in mice as well as in tissue cultures.  相似文献   

14.
The in vitro virulence properties of 197 temporally and geographically related Campylobacter isolates from chicken broilers and humans were compared. Comparisons of the virulence properties associated with genotypes and biotypes were made. All isolates adhered to, and 63% invaded, INT-407 cells, whereas 13% were cytotoxic for CHO cells. CHO cell-cytotoxic extracts were also cytotoxic for INT-407 cells, but the sensitivity for Vero cells was variable. The proportion of isolates demonstrating a high invasiveness potential (>1,000 CFU ml−1) or Vero cell cytotoxicity was significantly higher for human than for poultry isolates. Invasiveness was associated with Campylobacter jejuni isolates of biotypes 1 and 2, whereas CHO and INT-407 cell cytotoxicity was associated with C. jejuni isolates of biotypes 3 and 4. Cytotoxic isolates were also clustered according to pulsed-field gel electrophoresis profiles.  相似文献   

15.
16.
The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42–53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2. All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iβ-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iβ-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2-mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.  相似文献   

17.
In addition to their role in the virulence attenuation of Salmonella and other pathogens, dam or seqA genes increase the sensitivity towards hydrogen peroxide. The aim of our study is to investigate the effect of H2O2 on the motility, the catalase and superoxide dismutase activities of dam and/or seqA mutants of Salmonella typhimurium. Our findings showed significant differences of the effects of H2O2 on the motility between wild type strain and all of mutants. Hydrogen peroxide changes SOD isoenzyme profile of these mutants by disappearance of Fe-SOD. Concerning the catalase, an increase of its activity was observed in the wild type, dam and seqA mutant. However, H2O2 decreases the activity of this enzyme in the double mutant strain. We can suggest that the dam gene, together with seqA, play a protective role in the oxidative stress response of Salmonella typhimurium.  相似文献   

18.
We constructed and characterized a Xanthomonas campestris pv. phaseoli oxyR mutant. The mutant was hypersensitive to H2O2 and menadione killing and had reduced aerobic plating efficiency. The oxidants’ induction of the catalase and ahpC genes was also abolished in the mutant. Analysis of the adaptive responses showed that hydrogen peroxide-induced protection against hydrogen peroxide was lost, while menadione-induced protection against hydrogen peroxide was retained in the oxyR mutant. These results show that X. campestris pv. phaseoli oxyR is essential to peroxide adaptation and revealed the existence of a novel superoxide-inducible peroxide protection system that is independent of OxyR.  相似文献   

19.
Production and localization of endogenous hydrogen peroxide (H2O2) were investigated in strains of Xanthomonas by histochemical analysis under electron microscopy. Even though the levels of endogenous H2O2 production were different among various strains, the produced H2O2 was localized in the cell wall of all Xanthomonas strains tested. The impairment of the level of endogenous H2O2 accumulation resulted in a significantly decreased growth rate of bacteria, regardless if the difference of the H2O2 level is originally present between wild type strains or caused by mutation of the ahpC gene of Xanthomonas. The endogenous accumulation of H2O2 positively correlates with the cell division. Interestingly, the accumulated H2O2 was also localized in the mesosome-like structure and nucleoids during the cell division cycle. Furthermore, results revealed quantitative and dimensional changes of H2O2 accumulation in the two additional locations. These findings indicated that the additional locations of the accumulated H2O2 were closely associated with the process of cell division. Together, these results suggest that the endogenous H2O2 production plays an important role in cell proliferation of Xanthomonas.  相似文献   

20.
Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24‐epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H2O2) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H2O2 and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1‐301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H2O2 and NO production. EBR‐triggered H2O2 and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1‐1 mutant and the cGα line (constitutively overexpressing the G protein α‐subunit AtGPA1). Exogenously applied H2O2 or sodium nitroprusside (SNP) rescued the defects of etr1‐3 and gpa1 or etr1 and gpa1 mutants in EBR‐induced stomatal closure, whereas the stomata of eto1‐1/AtrbohF and cGα/AtrbohF or eto1‐1/nia1‐2 and cGα/nia1‐2 constructs had an analogous response to H2O2 or SNP as those of AtrbohF or Nia1‐2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1‐3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR‐induced stomatal closure. Lastly, we demonstrated that Gα‐activated H2O2 production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H2O2 production in mutant Nia1‐2. Exogenously applied SNP rescued the defect of AtrbohF in EBR‐induced stomatal closure, but H2O2 did not reverse the lesion of EBR‐induced stomatal closure in Nia1‐2. Together, our results strongly suggest a signaling pathway in which EBR induces ethylene synthesis, thereby activating Gα, and then promotes AtrbohF‐dependent H2O2 production and subsequent Nia1‐catalyzed NO accumulation, and finally closes stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号