首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyanionic water-soluble polymers containing sulphate, phosphate and polycarboxylate groups were synthesized. These compounds, when simply added to haemoglobin solutions, were shown to lower the affinity of the protein for oxygen. Their influence on oxygen affinity was regarded as the result of a specific interaction of the polymer anionic groups inside the 2,3-diphosphoglycerate-binding site of deoxyhaemoglobin. On the other hand, these polymers were linked to deoxyhaemoglobin to give covalent conjugates also exhibiting an oxygen affinity lower than that of free haemoglobin in the presence of 2,3-diphosphoglycerate, its natural effector, which means that after fixation, the polyanionic polymers are still acting as effectors.  相似文献   

2.
Bovine red cells do not contain appreciable amounts of 2,3-diphosphoglycerate (2,3-DPG). Bovine hemoglobin, however, has a particular sensitivity to chloride ions and as a result it can attain oxygen affinity values lower than those measured for human hemoglobin in the presence of 2,3-DPG. The interaction of bovine hemoglobin with anions is modulated by the hydrophobic characteristics of the protein. Comparison of the hydropathy plots of primate and ruminant hemoglobins indicates constant regions of opposite hydrophobicity, which have fixed amino acid differences. A model is proposed for explaining the regulation of oxygen affinity by chlorides, as an alternative to the classic modulation by 2,3-DPG.  相似文献   

3.
The oxygen binding property of Hb Sawara (alphaA4 Asp replaced by Ala) was studied at different pH values with and without addition of 2,3-diphosphoglycerate. The oxygen affinity of Hb Sawara was shown to be increased, the difference of the log P50 value between normal and abnormal hemoglobins being 0.37 at pH 7.0. Both the magnitude of the alkaline Bohr effect and the effect of 2,3-diphosphoglycerate upon oxygen affinity of Hb Sawara were comparable to those of Hb A. The amino acid substitution of alanine for alphaA4 aspartic acid might result in the loss of a stabilizing force for ionic interaction between the alpha-amino group of NA (1)alpha1 valine and the alpha-carboxyl of HC3(141)alpha2 arginine in the deoxy-form.  相似文献   

4.
It was shown that on the 30th-60th days of training rats to hypoxia under conditions of pressure chamber there was an increase in ATP and 2,3-diphosphoglycerate content in erythrocytes. By changing the affinity of hemoglobin to oxygen the mentioned shifts could play an important role in the improvement of oxygen supply to the tissues.  相似文献   

5.
A study was made of the haemoglobin (Hb) system from the Sardinian dwarf horse (Equus caballus jara), one of the last surviving wild horse species in Europe. The oxygen binding properties of the whole haemolysate and of the four different horse Hbs, separated by ion-exchange chromatography, were studied with special regard to the effect of chloride, 2,3-diphosphoglycerate and lactate. Results indicate that no significant functional differences exist between the four Hb components of horse haemolysate. Moreover, the molecular basis of the intrinsically low oxygen affinity and of the weak interaction of horse Hb with 2,3-diphosphoglycerate is discussed in the light of the primary structure of the molecule and of the results of a computer modelling approach. On these bases, it is suggested that the A1 (Thr-->Ser) and A2 (Pro-->Gly) substitutions observed in the beta chains from horse Hb may be responsible for the displacement of the A helix that is known to be a key structural feature of those Hbs that display an altered interaction with 2,3-diphosphoglycerate as compared with human Hb.  相似文献   

6.
Hemoglobin Deer Lodge is an abnormal human hemoglobin with arginine substituted for histidine at the beta 2 position. X-ray crystallography of normal human hemoglobin has shown that the beta 2 residue is normally part of the binding site for 2,3-diphosphoglycerate. The substitution of arginine for histidine at beta 2 affects both the kinetics and equilibria of ligand binding. When stripped of anions, Hb Deer Lodge has an increased oxygen affinity and a decreased degree of cooperativity relative to Hb A. The alkaline Bohr effect is slightly increased and there are marked increases in oxygen affinity below pH 6 and above pH 8. In the presence of 2,3-diphosphoglycerate the cooperativity in increases to nromal and the pH dependence of oxygen binding is reduced. This contrasts with the enhanced Bohr effect seen for Hb A in the presence of organic phosphates. Due to enhanced anion binding at high pH, Hb Deer Lodge has a slightly lower oxygen affinity than Hb A at pH 9 in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate. Kinetic studies at neutral pH in the absence of organic phosphates revealed biphasicity in the rate of oxygen dissociation from Hb Deer Lodge, while approximately linear time courses were observed for Hb A. The fast phase of the oxygen dissociation kinetics shows great pH sensitivity, and organic phosphates increase the rate and percentage of the fast phase without greatly affecting the slow phase. The two phases are not resolvable at high pH. CO combination kinetics are much like those of Hb A except that "fast" and "slow" phases were apparent at wavelengths near the deoxy-CO isobestic point. We suggest that functional differences between the alpha and beta chains are enhanced in Hb Deer Lodge. After flash photolysis of the CO derivative, the percentage of quickly reacting material was slightly greater for Hb Deer Lodge than for Hb A. This may imply a somewhat greater tendency to dissociate into high affinity subunits. The substitution of arginine for histidine at beta 2 thus results in a macromolecule whose ligand-binding properties are significantly altered, the primary differences being expressed at high pH where Hb Deer Lodge binds anions more strongly than Hb A. The properties of Hb Deer Lodge are compared to those of other hemoglobin variants with substitutions at residues involved in binding of 2,3-diphosphoglycerate.  相似文献   

7.
An allosteric modulator of oxygen release in human erythrocytes is 2,3-diphosphoglycerate, but bovine erythrocytes apparently utilize chloride for this purpose since they contain little, if any, 2,3-diphosphoglycerate. In order to identify the sites to which these anions bind, the site-specific acetylating agent, methyl acetyl phosphate, has been employed to compete with these allosteric modulators and to mimic their effects on hemoglobin function. With human hemoglobin A, methyl acetyl phosphate competes with 2,3-diphosphoglycerate and acetylates only Val-1(beta), Lys-82(beta), and Lys-144(beta) within or near the cleft that binds this organic phosphate (Ueno, H., Pospischil, M. A., Manning, J. M., and Kluger, R. (1986) Arch Biochem. Biophys. 244, 795). With bovine hemoglobin, the acetylation is competitive with chloride ion. The sites of acetylation in oxy bovine hemoglobin are Met-1(beta) and Lys-81(beta) and for deoxy bovine hemoglobin, they are Val-1(alpha) and Lys-81(beta). Thus, these sites are expected to be involved in the binding of chloride to bovine hemoglobin. Treatment of either human or bovine hemoglobins with methyl acetyl phosphate under anaerobic conditions leads to a lowering of their oxygen affinity and hence the covalent modifier has the same effect on hemoglobin function as the non-covalent regulators, 2,3-diphosphoglycerate and chloride. The Hill's coefficient of hemoglobin is unaffected by treatment with methyl acetyl phosphate. Under aerobic conditions, specifically acetylated bovine hemoglobin also has a lowered oxygen affinity, and human hemoglobin A shows a slight change in its oxygen affinity. In general, bovine hemoglobin is more responsive than human hemoglobin to both chloride and methyl acetyl phosphate; the latter agent results in a permanent covalent labeling of the protein. Therefore, the results support the idea that methyl acetyl phosphate may be a useful probe for deciphering the sites of binding of anions to proteins.  相似文献   

8.
Human haemoglobin was immobilized by cross-linking with glutaraldehyde as soluble polymers and artificial membranes. Effects of pH and 2,3-diphosphoglycerate on oxygen binding and cross-linking were studied with haemoglobin immobilized in both the oxy and deoxy states. The cooperativity is suppressed and the affinity is increased when compared with native haemoglobin. Haemoglobin immobilized in the oxy state exhibited a higher oxygen affinity than that immobilized in the deoxy state. The alkaline Bohr effect is not significantly different from that of native haemoglobin. The 2,3-diphosphoglycerate influence on oxygen binding was reduced by one third with immobilization. In order to separate the chemical and the "conformation freezing' effects on the properties of immobilized haemoglobin, glutaraldehyde-modified haemoglobin in oxy and deoxy states was produced. Oxygen binding was studied and chemical modifications were checked by electrophoresis and gel filtration. This chemically modified haemoglobin without polymerization and without intra-chain bridging exhibits a behaviour similar to that of cross-linked soluble polymers or membranes of haemoglobin.  相似文献   

9.
THE glycolytic intermediate, 2,3-diphosphoglycerate, is an intracellular regulator of the oxygen affinity of haemoglobin1,2. At high altitudes there is a direct relationship between the decreased oxygen affinity of haemoglobin and the increased concentration of diphosphoglycerate in the blood3. This was explained by Benesch et al.4 and Chanutin et al.5, who found that the binding of diphosphoglycerate to haemoglobin reduces the oxygen affinity and by our finding that the concentration of diphosphoglycerate increases when the red cells are incubated under low oxygen tension6,7, thereby releasing oxygen from haemoglobin. For the same reason, the oxygen tension is reduced during the circulation of blood from the pulmonary alveoli to the tissues; the decreased level of the diphosphoglycerate facilitates the binding of oxygen to haemoglobin in the pulmonary alveoli and the increased level of the diphosphoglycerate in the blood of the capillaries decreases the affinity of haemoglobin for oxygen. We have measured the amount of 2,3-diphosphoglycerate and other glycolytic intermediates in arterial and venous blood to test this supposition.  相似文献   

10.
Oxygen-linked effects of inositol hexaphosphate occur in heme-containing non-alpha chains isolated from normal human hemoglobin, fetal hemoglobin, and the abnormal human hemoglobin Abruzzo, beta143(H21) His leads to Arg. The occurrence of these effects implies that the chains undergo ligand-linked conformational changes. Inositol hexaphosphate lowers the oxygen affinity of isolated beta and gamma chains by differential binding to their deoxy conformations. Neither 2,3-diphosphoglycerate nor inorganic phosphate produces such an effect. In the case of Abruzzo beta chains, the binding of inorganic phosphate and 2,3-diphosphoglycerate is also oxygen-linked. Stripped beta chains isolated from hemoglobin Abruzzo have much higher oxygen affinity than beta chains isolated from HbA. Their higher oxygen affinity and enhanced allosteric interactions with phosphates account, in large part, for the abnormal functional behavior of the hemoglobin Abruzzo tetramer. In this hemoglobin variant the substitution of arginine for histidine at beta143 involves a residue known to interact with anionic allosteric effectors of hemoglobin. It is of interest that the effect of inositol hexaphosphate observed with isolated gamma chains is comparable to the effect observed with isolated beta chains, even though the gamma143 position is occupied by an uncharged serine residue.  相似文献   

11.
Patients on a chronic hemodialysis regimen were studied with respect to their erythrocyte adaptation to anemia. Erythrocyte 2,3-diphosphoglycerate (DPG) concentration was suboptimal compared with that of anemic patients who were not uremic. In uremic patients erythrocyte 2,3-DPG correlated poorly with hemoglobin level but more strongly with plasma pH. Differences between observed levels of erythrocyte 2,3-DPG and the values predicted using data from other anemic patients also correlated with pH. Gradual correction of plasma pH with oral sodium bicarbonate resulted in a substantial increase in erythrocyte 2,3-DPG and a decrease in oxygen affinity. Therefore, maintenance of normal pH in uremic subjects may improve tissue oxygenation. On the other hand, the rapid correction of acidosis during dialysis resulted in increased oxygen affinity. This response was due to the direct effect of pH on oxygen affinity in the absence of a significant change in erythrocyte 2,3-DPG or adenosine triphosphate (ATP) during hemodialysis. Erythrocyte ATP but not 2,3-DPG correlated with serum inorganic phosphate in uremic subjects. A 21% reduction of serum phosphate produced by ingestion of aluminum hydroxide gel had no significant effect on these variables.  相似文献   

12.
We studied the oxygenation of mammalian hemoglobins: mouse (Mus musculus molossinus), rabbit (Oryctolagus cuniculus domesticus), Japanese monkey (Macaca fuscata), man (Homo sapiens), sheep (Ovis aries), llama (Lama glama), pig (Sus scrofa domesticus), cow (Bos taurus domesticus) and horse (Equus caballus), in the absence of 2,3-diphosphoglycerate (DPG) and compared their oxygen affinity in relation to the body weight. The negative correlation between body weight and the oxygen affinity of the whole blood, observed by Schmidt-Nielsen and Larimer (1958), was not observed in the absence of DPG. Our results indicated that an adaptive evolution proposed for hemoglobin in terms of its oxygen affinity vs body weight of the animal can only be appreciated with DPG.  相似文献   

13.
Adult hemoglobin and fetal hemoglobin were obtained from Japanese monkey (Macaca fuscata) and their oxygen equilibrium characteristics were studied. (1) The oxygen affinity of fetal hemoglobin was higher than that of adult hemoglobin both in the presence and absence of 2,3-diphosphoglycerate. The presence of diphosphoglycerate lowers the oxygen affinity of adult hemoglobin much greater than does that of HbF and the diphosphoglycerate levels of red cells of adult and newborn monkeys are about the same. (2) The intensity of the Bohr effect, as expressed by -deltalogP50/deltapH, at pH 7.4 was in the order of fetal hemoglobin-diphosphoglycerate greater than adult hemoglobin-diphosphoglycerate greater than fetal hemoglobin greater than adult hemoglobin.  相似文献   

14.
The oxygen-binding properties of hemoglobin, concentration of 2,3-diphosphoglycerate, activity of carbohydrate metabolism enzymes and kinetics of rat erythrocyte hemolysis have been studied at high altitudes. The hemoglobin affinity to oxygen, glycolysis enzyme activity and erythrocyte membrane resistance are established to increase at the initial period of adaptation. The activation of the pentose-phosphate pathway of the glucose, transformation and inhibition of the glycolytic process in these cells are observed on the 10th day.  相似文献   

15.
In order to decrease significantly the oxygen affinity of human hemoglobin, we have associated the mutation betaF41Y with another point mutation also known to decrease the oxygen affinity of Hb. We have synthesized a recombinant Hb (rHb) with two mutations in the beta chains: rHb betaF41Y,K66T. In the absence of 2, 3-diphosphoglycerate, additive effects of the mutations are evident, since the doubly mutated Hb exhibits a larger decrease in oxygen affinity than for the individual single mutations. In the presence of 2,3-diphosphoglycerate, the second mutation did not significantly increase the P(50) value relative to the single mutations. However, the kinetics of CO binding still indicate combined effects on the allosteric equilibrium, as evidenced by more of the slow bimolecular phase characteristic of binding to the deoxy conformation. Dimer-tetramer equilibrium studies indicate an increase in stability of the mutants relative to rHb A; the double mutant rHb betaF41Y, K66T at pH 7.5 showed a K(4,2) value of 0.26 microM. Despite the lower oxygen affinity, the single mutant betaF41Y and double mutant betaF41Y,K66T show only a moderate increase of 20% in the autoxidation rate. These mutations are thus of interest in developing a Hb-based blood substitute.  相似文献   

16.
1. Incubation of human, rat, cow, sheep, dog, rabbit and monkey erythrocytes with phosphoenolpyruvate (PEP) resulted in increased intracellular 2,3-diphosphoglycerate (2,3-DPG). 2. Physiologic temperature (37 degrees C) and a pH less than 6.5 were required for transport and metabolism of PEP in rat and monkey erythrocytes. 3. Although erythrocytes from all species (except pig) exhibited PEP transport and metabolism, hemoglobin oxygen affinity (HOA) was affected only in species whose hemoglobins are sensitive to 2,3-DPG. 4. These results suggest that the effect of PEP incubation on HOA is mediated through 2,3-DPG.  相似文献   

17.
Abstract

Red cell count, haemoglobin concentration, haematocrit, mean cell volume, and mean cell haemoglobin concentration were recorded for the fur seal Arctocephalus forsteri (Lesson). The data did not indicate haematological adaptations for deep diving nor for extended periods of submergence. Two distinct haemoglobin types were isolated from the red cells by electrophoresis. The oxygen affinity of the blood was low as measured by half-saturation values (p50) of 42.3 mm Hg at pH 7.1 and 26.2 mm Hg at pH 7.4 and 37°c. The low oxygen affinity was mediated by erythrocytic 2,3-diphosphoglycerate, and on this basis a high turnover of oxygen to the tissues is postulated. The role of the blood in oxygen transport appears to be suited for feeding near the surface rather than by deep diving.  相似文献   

18.
Hemoglobin Dallas, an alpha-chain variant with a substitution of lysine for asparagine at position 97(G4), was found to have increased oxygen affinity (p1/2 = 1 mmHg at pH 7.3 and 20 degrees C), diminished cooperativity (n, the Hill coefficient = 1.7) and reduced Bohr effect (about 50%). Addition of allosteric effectors (such as 2,3-diphosphoglycerate, inositol hexakisphosphate and bezafibrate) led to a decrease in oxygen affinity and increase in cooperative energy. Kinetic studies at pH 7.0 and 20 degrees C revealed that (i), the overall rate of oxygen dissociation is 1.4-fold slower than that for HbA and (ii), the carbon monoxide dissociation rate is unaffected. The abnormal properties of this hemoglobin variant can be attributed to a more 'relaxed' T-state.  相似文献   

19.
Summary Haemoglobin-oxygen equilibrium curves have been measured in developing embryonic mouse erythroid cells. At 11.5 days gestation, shortly after blood islands from the yolk sac have formed but before the placenta is complete, erythrocytes have a high affinity for oxygen and a reverse Bohr effect below pH 7.0 (Figs. 1, 2, 3). By 13.5 days both the Bohr shift and the shape of the equilibrium curves are similar to those obtained from adult mice. From 13.5 days onwards, 2,3-diphosphoglycerate plays an important role in regulating oxygen affinity (Figs. 2, 4). It is suggested that the oxygen equilibrium properties of embryonic erythrocytes are adapted to service the developing embryo with oxygen under hypoxic and hypercapnic conditions in the intra-uterine environment up until the time when the embryonic circulation makes contact with the placenta.  相似文献   

20.
A mechanism for indirect allosteric action of charged effectors on substrate binding to a macromolecule is proposed. It is accounted for by electrostatic interaction among effectors in the solution, away from their receptors. The possibility of the mechanism proposed is tested in the allosteric action of univalent salt and 2,3-diphosphoglycerate on oxygen binding to hemoglobin. A model for electrostatic interaction between these two effectors in the solution and for their overall effect on oxygen binding is introduced. The 2,3-diphosphoglycerate binding constant to deoxygenated hemoglobin as a function of univalent salt concentration and the median ligand activity as a function of the concentration of univalent salt and 2,3-diphoshoglycerate are calculated and compared with experimental data. The obtained results indicate that electrostatic interaction in the solution may significantly contribute to indirect allosteric action of charged effectors. Partly presented at the “11th FEBS Meeting” in Copenhagen, August 1977  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号