首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well known that proinflammatory cytokines produced by host cells play an important role in periodontal tissue destruction. However, the localization of the cytokines in in vivo periodontal tissues during development of periodontal disease has not been determined. Immunohistochemical expression of proinflammatory cytokines including IL-1!, IL-1#, and TNF-! was examined at 1 and 3 h, and 1, 2, 3, and 7 days after topical application of lipopolysaccharide (LPS; 5 mg/ml in physiological saline) from E. coli into the rat molar gingival sulcus. In the normal periodontal tissues, a small number of cytokine-positive epithelial cells were seen in the junctional epithelium (JE), oral sulcular and oral gingival epithelium, in addition to macrophages infiltrating in the subjunctional epithelial area and osteoblasts lining the alveolar bone surface. Epithelial remnants of Malassez existing throughout periodontal ligament were intensely positive for IL-1# but negative for the other two cytokines. At 3 h after the LPS treatment, almost all cells in the JE were strongly positive for the cytokines examined. In addition, several cytokine-positive cells, including neutrophils, macrophages, and fibroblasts, were seen in the subjunctional epithelial connective tissue. At day 2, expression of the cytokines in the JE gradually decreased, while cytokine-positive cells in the connective tissue increased in number. Positive staining of the cytokines was seen in osteoclasts and preosteoclasts which appeared along the alveolar bone margin in this period. The number of cytokine-positive cells decreased by day 7. These findings indicate that, in addition to macrophages, neutrophils, and fibroblasts, the JE cells are a potent source of TNF-!, IL-1!, and IL-1# reacting to LPS application, and suggest that JE cells may play an important role in the first line of defense against LPS challenge, and the proinflammatory cytokines transiently produced by various host cells may be involved in the initiation of inflammation and subsequent periodontal tissue destruction.  相似文献   

2.
The membrane potential of guinea pig polymorphonuclear leukocytes has been assessed with two indirect probes, tetraphenylphosphonium (TPP+) and 3,3′-dipropylthiadicarbocyanine (diS-C3-(5)). The change in TPP+ concentration in the medium was measured with a TPP+-selective electrode. By monitoring differences in accumulation of TPP+ in media containing low and high potassium concentrations, a resting potential of −58.3 mV was calculated. This potential is composed of a diffusion potential due to the gradient of potassium, established by the Na+, K+ pump, and an electrogenic potential. The chemotactic peptide fMet-Leu-Phe elicits a rapid efflux of accumulated TPP+ (indicative of depolarization) followed by its reaccumulation (indicative of repolarization). In contrast, stimulation with concanavalin A results in a rapid and sustained depolarization without a subsequent repolarization. The results obtained with TPP+ and diS-C3-(5) were comparable. Such changes in membrane potential were observed in the absence of extracellular sodium, indicating that an inward movement of sodium is not responsible for the depolarization. Increasing potassium levels, which lead to membrane depolarization, had no effect on the oxidative metabolism in nonstimulated or in fMet-Leu-Phe-stimulated cells. Therefore, it seems unlikely that membrane depolarization per se is the immediate stimulus for the respiratory burst.  相似文献   

3.
Abstract Trypan blue exclusion was used to estimate the viability of human polymorphonuclear leukocytes (PMNL) in the presence of Mycoplasma felis and two strains of M. fermentans (PG18 and incognitus). The competence of PMNL to mount a respiratory burst when challenged with the mycoplasmas was also monitored by luminol-dependent chemiluminescence (CL). Both un-opsonised and non-immune human serum opsonised M. felis cells had little effect on PMNL viability. In contrast, PMNL viability was reduced markedly by un-opsonised cells of M. fermentans strain incognitus and, to a lesser extent, strain PG18, and opsonisation of these mycoplasmas further enhanced killing. Death of PMNL in the presence of M. fermentans was not associated with the autonomous production of active oxygen species during the respiratory burst as M. felis induced a high CL response from PMNL, whereas that induced by M. fermentans strain incognitus was significantly lower. M. fermentans may invade mammalian cells and it is suggested that the mechanism of PMNL death could be related to the ability of M. fermentans to penetrate host cell membranes.  相似文献   

4.
Summary. The aim of this study was to evaluate the effect of endotoxin on PMN leukocyte respiratory burst activity by measuring G6PD, NADPH oxidase and XO activities in guinea pig. In addition, the possible protective role of taurine against endotoxin-mediated PMN leukocyte function was examined. All experiments were performed with four groups (control, taurine, endotoxemia, taurine plus endotoxin) of ten guinea pigs. After the endotoxin was administrated (4 mg/kg) both G6PD and NADPH oxidase activities were significantly reduced compared with the control group. NADPH oxidase activity returned to the control value and G6PD activity also increased but it did not reach the control value. However when taurine was administrated (300 mg/kg) the activity of NADPH oxidase reached the control value; furthermore, G6PD activity also increased but it could not reach to the control value. When taurine was administrated alone, no effect on these enzymes was observed. Following the endotoxin administration, the activity of XO considerably increased. When taurine was administrated together with endotoxine and alone, this activity decreased compared to control value in both conditions. These results indicate that the O2 •− formation in PMN leukocytes after the endotoxin administration is ensured by the catalysis of XO due to the inhibited NADPH oxidase activity. It was observed that taurine has considerable anti-inflammatory and antioxidant effects. However, conflicting results were obtained when taurine was administrated alone or together with an oxidant agent.  相似文献   

5.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

6.
Cytoplasmic pH (pHi) plays an important role in the regulation of polymorphonuclear leukocyte (PMN) spreading, but the molecular mechanisms involved have long been obscure. In the present study, we investigated the pH-dependence of phorbol myristate acetate (PMA)-induced PMN spreading. A change in pHi alone did not induce spreading, but cytoplasmic alkalinization promoted the spreading induced by PMA, whereas acidification inhibited it. To further investigate the mechanism by which pHi affects cell spreading, we employed subcellular fractionation and immunoblot analyses to evaluate the effect of pH on the subcellular distribution of protein kinase C (PKC) and assembly of the actin cytoskeleton. We found that cytoplasmic alkalinization enhanced PKC membrane distribution and quantitatively up-regulated the actin cytoskeleton. On the other hand, cytoplasmic acidification was found to have effects on these signaling molecules that were opposite to those of cytoplasmic alkalinization. These results may provide a potential explanation for the pH-regulation of the PMA-induced PMN spreading.  相似文献   

7.
We have recently demonstrated that NO-mediated polymorphonuclear (PMN)-dependent inhibition of rat platelet aggregation is significantly enhanced in the presence of ascorbate. Consequently, the present study was undertaken to elucidate the underlying mechanisms involved in ascorbate-mediated potentiation of NO synthesis in PMNs. We observed that ascorbate or its oxidized product, dehydroascorbate (DHA), enhanced NOS activity, as measured by nitrite content, diaminofluorescein fluorescence or conversion of L-[3H]arginine to L-[3H]citrulline in rat, monkey, and human PMNs. The increase in NO generation following ascorbate treatment was due to the intracellular ascorbate as iodoacetamide-mediated inhibition of DHA to ascorbate conversion attenuated the DHA-mediated increase in NO synthesis. The augmentation of NOS activity in the PMN homogenate by tetrahydrobiopterin was significantly enhanced by ascorbate, while ascorbate alone did not influence the NOS activity. Ascorbate-mediated enhancement of NOS activity in the cultured PMNs was significantly reduced in the presence of biopterin synthesis inhibitors. Ascorbate, thus, seems to regulate the NOS activity in the PMNs through tetrahydrobiopterin.  相似文献   

8.
Abstract Whereas addition of 200 ng ml−1 exotoxin A (exoA) did not modify PMNL chemotaxis, 20 U ml−1 human recombinant interleukin-1β (hrIL-1β) primed polymorphonuclear leukocytes (PMNL) for migration towards Pseudomonas aeruginosa peptide chemotactins (PAPCs). Piroxicam (100 μg ml−1), a non-steroidal anti-inflammatory agent (NSAIA), inhibited PMNL chemotaxis and abolished the priming effect of hrIL-1β. Both PAPCs and exoA induced PMNL superoxide anion production, but neither hrIL-1β nor piroxicam modified significantly PMNL superoxide anion production induced by PAPCs. The fact that hrIL-1β can prime PMNL for chemotaxis towards PAPCs and that piroxicam can abolish activation by primed PMNL are findings relevant to the pharmacological control of lung tissue damage during P. aeruginosa pneumonia.  相似文献   

9.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   

10.
Abstract The regulation of phagocytosis of neutrophils by peritoneal macrophages was studied in vitro. Peritoneal exudate cells (PECs) of guinea pigs were lavaged 15 h after the i.p. injection of thioglycollate medium and were cultured in chamberslides. When PECs were cultured in RPMI 1640 medium in the absence of serum, approximately 20% of the macrophages phagocytized autologous neutrophils during 48–72 h of culture. Addition of guinea pig serum to the culture (2.5–20% v/v) suppressed the extent of the phagocytosis. The suppression was induced by globulin-rich ammonium sulfate fractions of the serum. Sera from rat, mouse, hamster, horse or calf also suppressed the phagocytosis, but fetal bovine serum (FBS) supported the phagocytosis, which was inhibited by globulin-rich Cohn fractions of bovine serum. The rate of neutrophil-phagocytosing macrophages was proportional to the rate of the pyknotic change of neutrophils. At a high temperature (42°C), the autophagocytosis took place at 12 h of culture when fresh, but not heat-inactivated, autologous serum was added, implying that complement components may play a role in the hyperthermia-induced phagocytosis of neutrophils by macrophages. At 42°C, ingested neutrophils did not show the pyknotic changes, indicating that intact neutrophils were ingested by macrophages.  相似文献   

11.
Recent reports have indicated that, as well as having antiresorptive effects, bisphosphonates could have an application as anti-inflammatory drugs. Our aim was to investigate whether this anti-inflammatory action could be mediated by the nitric oxide (NO) released by the leukocytes migrating to the site of inflammation. In particular, we investigated in vitro the intracellular calcium concentration ([Ca2+]i), the level of NO released by PMN and platelets, and the PMN myeloperoxidase activity after incubation with disodium pamidronate, since there was a postulated modulatory effect of this aminosubstituted bisphosphonate on leukocytes both in vitro and in vivo. Our data shows that the pamidronate treatment provoked a significant increase in the [Ca2+]i parallel to the enhancement in NO release, suggesting a possible activation of constitutive nitric oxide synthase, while the myeloperoxidase activity was significantly reduced. In conclusion, we hypothesized that treatment with pamidronate could stimulate NO-production by cells present near the bone compartment, thus constituting a protective mechanism against bone resorption occurring during inflammation. In addition, PMN- and platelet-derived NO could act as a negative feed-back signal to restrict the inflammatory processes.  相似文献   

12.
牙周炎的病因学研究经历了从非特异性菌斑学说、特异性菌斑学说到生态菌斑学说的转变,但其具体的发病机制仍有待进一步研究。近年来,有学者提出了多微生物协同和生态失调模型,病原体组作为疾病病因学中的新概念也逐渐引起重视,这些都提示牙周感染中牙菌斑生物膜与宿主之间存在复杂的相互作用。因此,构建牙周微生态模型对牙周炎病因及防治的研究具有重要意义。目前已有不同研究构建了多个体外牙周微生态模型,其建模方法和应用存在差异。本文就体外牙周微生态模型构建方法及应用进展进行综述,以期为相关研究提供参考。  相似文献   

13.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is characterized as an important enzyme for protecting cells from oxidative stress-induced apoptosis and regulating the production of leukotrienes and prostanoids in cells overexpressing PHGPx. We studied whether the expression level of PHGPx fluctuates in polymorphonuclear leukocytes (PMNs) which were exposed to reactive oxygen species (ROS) and inflammatory cytokines at an inflammation site. Human peripheral PMNs up-regulated the expression level of PHGPx following culture with TNF-alpha, but not with IL-1beta, IL-8, and GRO. The up-regulated PHGPx expression was also observed in neutrophil-like cells that differentiated from the human leukemia cell line HL60 only after stimulation with TNF-alpha. However, macrophage-like differentiated HL60 cells and other cell lines, A498, ECV304, HeLa, U937, and HEK293, showed no increase in the PHGPx expression. This up-regulation of PHGPx was inhibited by treatment with the anti-oxidants, pyrrolidine dithiocarbamate, and N-acetyl-L-cysteine, and by inhibitors of NFkappaB and Src kinases. The stimulation of neutrophil-like differentiated HL60 cells with TNF-alpha induced activation of NFkappaB and c-Src kinase, and the activation was attenuated by treatment with the anti-oxidants. Up-regulation in neutrophil-like HL60 cells was also observed following exposure to H(2)O(2). These results indicate that activation of NFkappaB and/or Src kinases through ROS signaling may be involved in the up-regulation of the PHGPx in human PMNs stimulated by TNF-alpha.  相似文献   

14.
Polymorphonuclear leukocytes were isolated from the peripheral blood of rabbits by Ficoll-Hypaque centrifugation followed by dextran sedimentation. The granulocytes were homogenized in isotonic sucrose and subjected to analytical subcellular fractionation by sucrose density gradient centrifugation. Leucine aminopeptidase, when assayed with L-leucine-7-amido-4-methyl-coumarin as substrate, showed a similar distribution to N-acetyl-ß-glucosaminidase and thus is localized to the tertiary granules. There was no leucine aminopeptidase associated with the plasma membrane of these cells. Further experiments with purified plasma membranes and inhibitor studies using diazotized sulphanilic acid further confirmed that leucine aminopeptidase had a purely intracellular localization. Vitamin B-12 binding protein showed a similar localization to alkaline phosphatase indicating that, as in human polymorphonuclear leukocytes, vitamin B-12 binding protein is located to the specific granules.  相似文献   

15.
The influence of serum on the phagocytosis and killing of Escherichia coli adherent to glass (‘surface phagocytosis’) was investigated by using 2 strains known to require opsonisation when phagocytosis takes place in suspension. Although phagocytosis of the unencapsulated strain occurred in the absence of serum, serum was necessary for the uptake of the encapsulated strain, and improved the uptake of both strains. Killing of ingested bacteria appeared to be independent of serum. Antibodies were not an absolute requirement for the promoting effect of serum, and the necessity for complement (Cp) appeared to depend on the presence of antibodies and on the strain tested. The results suggest that serum components other than opsonins (antibodies and Cp) contributed to the serum-enhanced uptake of bacteria.  相似文献   

16.
Binding of serum proteins (opsonization) on the surface of infective and early parasitic larvae of Ascaris suum is necessary to induce the adherence of polymorphonuclear leukocytes (PMN). When larvae are not pretreated in vitro with serum components, PMN do not adhere either to infective stage larvae or to parasitic larvae recovered from non-immune guinea pigs at 16, 25 or 48 h post oral infection. Adhesion of PMN occurs on all larval stages tested when they are first opsonized in vitro with the 7S fraction of immune serum. Opsonization with macroglobulins of immune serum or with Fab fragments of immune 7S protein does not induce the in vitro adherence of PMN. Adhesion of PMN to the larval surface results in reduction of Nitroblue tetrazolium to formazan precipitate at the larval surface, specifically in areas where cells are adherent, indicating oxidative enzyme action at the cuticle/PMN interface.  相似文献   

17.
1. Injected in the paw of the rat, polymorphonuclear leucocytes do not increase the oedematogen action of bradykinin, but increase the action of lambda carrageenan. 2. This potentiation of carrageenan action is not modified when PG biosynthesis in leucocytes is inhibited by indomethacin or aspirin. It does not appear in rats previously treated by indomethacin or aspirin. 3. Our results suggest that rat polymorphonuclear leucocytes increase the inflammatory reaction, when they are stimulated by carrageenan, by the release of a phospholipase A2 activity which induces PG biosynthesis in rat paw tissues.  相似文献   

18.
Polymorphonuclear leukocyte (PMN) accumulation/activation has been implicated as a primary mechanism underlying MI/R injury. Recent studies have demonstrated that PMNs express inducible nitric oxide synthase (iNOS) and produce toxic reactive nitrogen species (RNS). However, the role of iNOS-derived reactive nitrogen species and resultant nitrative stress in PMN-induced cardiomyocyte apoptosis after MI/R remains unclear. Male adult rats were subjected to 30 min of myocardial ischemia followed by 5 h of reperfusion. Animals were randomized to receive one of the following treatments: MI/R+vehicle; MI/R+L-arginine; PMN depletion followed by MI/R+vehicle; PMN depletion followed by MI/R+L-arginine; MI/R+1400 W; MI/R+1400 W+L-arginine and MI/R+ FeTMPyP. Ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis were determined. PMN depletion virtually abolished ischemia/reperfusion- induced PMN accumulation, attenuated ischemic/reperfusion-induced and L-arginine-enhanced nitrative stress, and reduced ischemic/reperfusion-induced and L-arginine-enhanced cardiomyocyte apoptosis (P values all <0.01). Pre-treatment with 1400 W, a highly selective iNOS inhibitor, had no effect on PMN accumulation in the ischemic/reperfused tissue. However, this treatment reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis to an extent that is comparable as that seen in PMN depletion group. Treatment with FeTMPyP, a peroxynitrite decomposition catalyst, had no effect on either PMN accumulation or total NO production. However, treatment with this ONOO decomposition catalyst also reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis (P values all <0.01). These results demonstrated that ischemic/reperfusion stimulated PMN accumulation may result in cardiomyocyte injury by an iNOS-derived nitric oxide initiated and peroxynitrite-mediated mechanism. Therapeutic interventions that block PMN accumulation, inhibit iNOS activity or scavenge peroxynitrite may reduce nitrative stress and attenuate tissue injury. Xiao-Liang Wang and Hui-Rong Liu contributed equally to this study.  相似文献   

19.
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.  相似文献   

20.
The differential effects of phagocytic and chemical stimuli on neutrophil enzyme and specific protein release were compared. Phorbol myristate acetate (PMA) stimulated release of the specific granule matrix marker, vitamin B-12-binding protein in a dose-dependent manner. Subcellular fractionation by sucrose density gradient centrifugation indicated that the residual vitamin B-12-binding protein is associated with the specific granule fraction. In contrast, neutral α-glucosidase and adenosine diphosphatase, associated with specific granule membranes, were not released by PMA. Subcellular fractionation studies suggest that fusion of the specific granule membrane and plasma membrane occurs, thus translocating the adenosine diphosphatase to the cell surface. The relevance of this finding to the possible role of nucleoside phosphatases in limiting platelet aggregation is discussed. Serum-treated zymosan particles also caused a selective released of vitamin B-12-binding protein from the specific granule without release of α-glucosidase and adenosine diphosphatase. Neither PMA nor opsonized zymosan caused significant release of azurophil, tertiary granule or cytosol marker enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号