首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell walls from bacillus subtilis 168 were prepared by conventional methods and found to contain deoxyribonucleic acid (DNA). In transformation assays, after autolysis, it was found that two major regions of the chromosome were selectively enriched in the wall preparations. One region clustered around the replication origin and is represented by the markers purA16, ts8132, thiC5, sacA321, and hisA1. The other region included the replication terminus with representative loci metB10, citK5, gltA292, and pyrA1. All other (internal) loci which were examined showed no statistical enrichment. The two areas of enrichment were similar to but more extensive than those reported for membrane-DNA complexes. The wall preparations also contained protein and lipid, indicating a possible membrane involvement. Analyses of the cell walls revealed that the fatty acid composition of the membrane component was not typical of the for B. subtilis protoplast membranes or for lipoteichoic acids. In addition, radioiodination of cell wall autolysates, followed by gel electrophoresis and autoradiography, demonstrated the presence of proteins not readily detectable in bulk protoplast membranes or on the surfaces of intact cells. These data suggest that a unique component of the membrane and regions of the B. subtilis genome involved in DNA replication events are tightly associated with cell walls. The binding of DNA-membrane complexes to the "rigid" cell wall and the replication of the wall could be a mechanism by which the segregation of growing chromosomes occurs.  相似文献   

2.
Binding parameters were determined for the SLH (S-layer homologous) domains from the Clostridium thermocellum outer layer protein OlpB, from the C. thermocellum S-layer protein SlpA, and from the Bacillus anthracis S-layer proteins EA1 and Sap, using cell walls from C. thermocellum and B. anthracis. Each SLH domain bound to C. thermocellum and B. anthracis cell walls with a different KD, ranging between 7.1 x 10(-7) and 1.8 x 10(-8) M. Cell wall binding sites for SLH domains displayed different binding specificities in C. thermocellum and B. anthracis. SLH-binding sites were not detected in cell walls of Bacillus subtilis. Cell walls of C. thermocellum lost their affinity for SLH domains after treatment with 48% hydrofluoric acid but not after treatment with formamide or dilute acid. A soluble component, extracted from C. thermocellum cells by sodium dodecyl sulfate treatment, bound the SLH domains from C. thermocellum but not those from B. anthracis proteins. A corresponding component was not found in B. anthracis.  相似文献   

3.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

4.
Bacillus subtilis cells grown under phosphate starvation induce teichuronic acid (TUA) synthesis while simultaneously repressing teichoic acid synthesis (TA). The turnover rates of TA-containing and TUA-containing walls are similar, indicating that autolysin function is similar and suggesting that modulation of autolytic function may be similar. In this study, it is demonstrated, utilizing fluorescein isothiocyanate (FITC)-dextran to probe the wall pH, that a low pH exists in the wall matrix. A second probe, cationized ferritin (CF), was used to observe cell surface protonation. Suspensions of B. subtilis cells containing either TA or TUA were aggregated with CF only after the addition of a proton-motive-force-dissipating agent. Respiring B. subtilis TUA-containing cells labelled with FITC-dextran exhibited little fluorescence. Conversely, fluorescence intensities exhibited by cells de-energized with nitrogen gas were significantly greater. The effects of protonmotive force on autolytic activity were studied by adding cell wall protein extract containing concentrated autolysin to exponentially growing TA-containing and TUA-containing B. subtilis cells. Both TUA-containing and TA-containing cells were lysed only after the addition of sodium azide. These data suggest that during normal growth the wall of TUA-containing B. subtilis cells is protonated, and proton-motive force influences autolytic regulation in both TUA-containing and TA-containing B. subtilis cells.  相似文献   

5.
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.  相似文献   

6.
1. Mg(2+)-limited Bacillus subtilis var. niger, growing in a chemostat in a simple salts medium, contained considerably more potassium and phosphorus than Mg(2+)-limited Aerobacter aerogenes growing in a similar medium at corresponding dilution rates. 2. Growth of the bacillus in a K(+)-limited environment did not lower the cellular potassium and phosphorus contents, the molar proportions of cell-bound magnesium, potassium, RNA (as nucleotide) and phosphorus being approximately constant at 1:13:5:13 (compared with 1:4:5:8 in Mg(2+)-limited or K(+)-limited A. aerogenes). 3. Growth of B. subtilis in a phosphate-limited environment caused the cellular phosphorus content to be lowered to a value similar to that of Mg(2+)-limited A. aerogenes, but the potassium content was not correspondingly lowered; the molar potassium:magnesium ratio varied from 14 to 17 with changes in dilution rate from 0.4 to 0.1hr.(-1). 4. Whereas over 70% of the cell-bound phosphorus of Mg(2+)-limited or K(+)-limited A. aerogenes was contained in the nucleic acids, these polymers accounted for less than 50% of the phosphorus present in similarly limited B. subtilis; much phosphorus was present in the walls of the bacilli, bound in a teichoic acid-type compound composed of glycerol phosphate and glucose (but no alanine). 5. Phosphate-limited B. subtilis cell walls (from organisms grown at a dilution rate of 0.2hr.(-1)) contained little phosphorus and no detectable amounts of teichoic acid, but 40% of the cell-wall dry weight could be accounted for by a teichuronic acid-type compound; this contained a glucuronic acid and galactosamine, neither of which could be detected in the walls of Mg(2+)-limited B. subtilis grown at a corresponding rate. 6. It is suggested that the high concentration of potassium in growing B. subtilis (compared with A. aerogenes) results from the presence of large amounts of anionic polymer (teichoic acid or teichuronic acid) in the bacillus cell walls.  相似文献   

7.
Beachey, Edwin H. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), and Roger M. Cole. Cell wall replication in Escherichia coli, studied by immunofluorescence and immunoelectron microscopy. J. Bacteriol. 92:1245-1251. 1966.-Cell wall components of four different strains of Escherichia coli (B; B/r, try(-); O5; and O86:B7) were labeled with homologous fluorescent antibodies (FLG); the way the label was dispersed on further growth in media free of antibody was followed by fluorescence microscopy. Fluorescence diminished diffusely along longitudinal wall but remained bright at cell poles (or cross walls); newly formed cross walls did not fluoresce. In agreement, reverse labeling (preincubation in unlabeled antibody, followed by staining on the slide with homologous FLG) showed that stainability of longitudinal wall increased gradually and diffusely with increased time of incubation, whereas polar wall remained nonfluorescent or stained only faintly; newly formed poles (or cross walls), on the other hand, stained brightly. These observations were confirmed by electron microscopy, after immunoferritin labeling. Although the mode of cross-wall formation remained unclear, our findings refuted reported ideas of segmental or polar growth of cell wall in E. coli and supported the idea of wall replication by diffuse intercalation, as described for Salmonella.  相似文献   

8.
Expression of the Bacillus thuringiensis cryIIIA gene encoding a Coleoptera-specific toxin is weak during vegetative growth and is activated at the onset of the stationary phase. cryIIIA'-'lacZ fusions and primer extension analysis show that the regulation of cryIIIA expression is similar in Bacillus subtilis and in B. thuringiensis. Activation of cryIIIA expression was not altered in B. subtilis mutant strains deficient for the sigma H and sigma E sporulation-specific sigma factors or for minor sigma factors such as sigma B, sigma D, or sigma L. This result and the nucleotide sequence of the -35 and -10 regions of the cryIIIA promoter suggest that cryIIIA expression might be directed by the E sigma A form of RNA polymerase. Expression of the cryIIIA'-'lacZ fusion is shut off after t2 (2 h after time zero) of sporulation in the B. subtilis wild-type strain grown on nutrient broth sporulation medium. However, no decrease in cryIIIA-directed beta-galactosidase activity occurred in sigma H, kinA, or spo0A mutant strains. Moreover, beta-galactosidase activity was higher and remained elevated after t2 in the spo0A mutant strain. beta-Galactosidase activity was weak in abrB and spo0A abrB mutant strains, suggesting that AbrB is responsible for the higher level of cryIIIA expression observed in a spo0A mutant. However, both in spo0A and spo0A abrB mutant strains, beta-galactosidase activity remained elevated after t2, suggesting that even in the absence of AbrB, cryIIIA expression is controlled through modulation of the phosphorylated form of Spo0A. When the cryIIIA gene is expressed in a B. subtilis spo0A mutant strain or in the 168 wild-type strain, large amounts of toxins are produced and accumulate to form a flat rectangular crystal characteristic of the coleopteran-specific B. thuringiensis strains.  相似文献   

9.
Insertion and fate of the cell wall in Bacillus subtilis   总被引:12,自引:4,他引:8       下载免费PDF全文
Cell wall assembly was studied in autolysin-deficient and -sufficient strains of Bacillus subtilis. Two independent probes, one for peptidoglycan and the other for surface-accessible teichoic acid, were employed to monitor cell surface changes during growth. Cell walls were specifically labeled with N-acetyl-D-[3H]glucosamine, and after growth, autoradiographs were prepared for both cell types. The locations of silver grains revealed that label was progressively lost from numerous sites on the cell cylinders, whereas label was retained on the cell poles, even after several generations. In the autolysin-deficient and chain-forming strain, it was found that the distance between densely labeled poles approximately doubled after each generation of growth. In the autolysin-sufficient strain, it was found that the numbers of labeled cell poles remained nearly constant for several generations, supporting the premise that completed septa and poles are largely conserved during growth. Fluorescein-conjugated concanavalin A was also used to determine the distribution of alpha-D-glucosylated teichoic acid on the surfaces of growing cells. Strains with temperature-sensitive phosphoglucomutase were used because in these mutants, glycosylation of cell wall teichoic acids can be controlled by temperature shifts. When the bacteria were grown at 45 degrees C, which stops the glucosylation of teichoic acid, the cells gradually lost their ability to bind concanavalin A on their cylindrical surfaces, but they retained concanavalin A-reactive sites on their poles. Discrete areas on the cylinder, defined by the binding of fluorescent concanavalin A, were absent when the synthesis of glucosylated teichoic acid was inhibited during growth for several generations at the nonpermissive temperature. When the mutant was shifted from a nonpermissive to a permissive temperature, all areas of the cylinder became able to bind the labeled concanavalin A after about one-half generation. Old cell poles were able to bind the lectin after nearly one generation at the permissive temperature, showing that new wall synthesis does occur in the cell poles, although it occurs slowly. These data, based on both qualitative and quantitative experiments, support a model for cell wall assembly in B. subtilis, in which cylinders elongate by inside-to-outside growth, with degradation of the stress-bearing old wall in wild-type organisms. Loss of wall material, by turnover, from many sites on the cylinder may be necessary for intercalation of new wall and normal length extension. Poles tend to retain their wall components during division and are turned over much more slowly.  相似文献   

10.
Bacillus subtilis 168ts-200B is a temperature-sensitive mutant of B. subtilis 168 which grows as rods at 30 C but as irregular spheres at 45 C. Growth at the nonpermissive temperature resulted in a deficiency of teichoic acid in the cell wall. A decrease in teichoic acid synthesis coupled with the rapid turnover of this polymer led to a progressive loss until less than 20% of the level found in wild-type rods remained in spheres. Extracts of cells grown at 45 C contained amounts of the enzymes involved in the biosynthesis and glucosylation of teichoic acids that were equal to or greater than those found in normal rods. Cell walls of the spheres were deficient also in the endogenous autolytic enzyme (N-acyl muramyl-l-alanine amidase). Genetic analysis of the mutant by PBS1-mediated transduction and deoxyribonucleic acid-mediated transformation demonstrated that the lesion responsible for these effects (tag-1) is tightly linked to the genes which regulate the glucosylation of teichoic acid in the mid-portion of the chromosome of B. subtilis.  相似文献   

11.
J. LEITCH AND P.J. COLLIER. 1996. Most chemically-defined media for the growth of Bacillus subtilis 168 in batch culture are unsuitable for use in nutrient limitation experiments due to either their low cell density yield or their high numbers of added amino-acids. The authors have developed a medium which gives relatively high cell densities and is highly chemically-defined, containing only one added amino-acid. Growth of B. subtilis in this new medium was observed over time using optical density measurements at 470 nm. The growth curve exhibited entry into exponential phase after only 1–2 h and stationary phase after 8 h. Cell density yields and comparison of growth rates with B. subtilis grown in Fang and Demain Medium (1989) suggest that this new medium is highly suitable for the growth of this micro-organism under both normal and nutrient limited conditions.  相似文献   

12.
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)‐anchored cell wall proteins and 30 non‐GPI‐anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.  相似文献   

13.
Lipoteichoic acid (LTA) was extracted by means of hot aqueous phenol from Bacillus subtilis subsp. niger WM cells grown under various conditions in chemostat culture. The extracts were partially purified by nuclease treatment and gel permeation chromatography. Chemical analyses revealed a composition consistent with a polyglycerol phosphate polymer. The influence on autolysis of the LTAs thus obtained was studied with both whole cells and autolysin-containing native walls of B. subtilis subsp. niger WM. Lysis rates of phosphate-limited cells could be reduced to about 40% of the control rate by the addition of LTA, whereas lysis of cells grown under phosphate-sufficient conditions was affected to a much lesser extent. The lysis of native walls prepared from variously grown cells proved to be fairly insensitive to the addition of LTA. The effect of LTA on wall turnover was studied by following the release of radioactively labeled wall material during exponential growth. The most obvious effect of LTA was a lowered first-order rate of release of labeled wall material; calculations according to the model for cell wall turnover in Bacillus spp. formulated by De Boer et al. (W. R. De Boer, F. J. Kruyssen, and J. T. M. Wouters, J. Bacteriol. 145:50-60, 1981) revealed changes in wall geometry and not in turnover rate in the presence of LTA.  相似文献   

14.
A study was made to determine whether factors other than the availability of phosphorus were involved in the regulation of synthesis of teichoic and teichuronic acids in Bacillus subtilis subsp. niger WM. First, the nature of the carbon source was varied while the dilution rate was maintained at about 0.3 h-1. Irrespective of whether the carbon source was glucose, glycerol, galactose, or malate, teichoic acid was the main anionic wall polymer whenever phosphorus was present in excess of the growth requirement, and teichuronic acid predominated in the walls of phosphate-limited cells. The effect of growth rate was studied by varying the dilution rate. However, only under phosphate limitation did the wall composition change with the growth rate: walls prepared from cells grown at dilution rates above 0.5 h-1 contained teichoic as well as teichuronic acid, despite the culture still being phosphate limited. The wall content of the cells did not vary with the nature of the growth limitation, but a correlation was observed between the growth rate and wall content. No indications were obtained that the composition of the peptidoglycan of B. subtilis subsp. niger WM was phenotypically variable.  相似文献   

15.
Labelling with stable isotopes has under-exploited potential for studies of polysaccharide endotransglycosylation in vivo. Ideally, the labelled polysaccharides should have the highest possible buoyant density. Although [13C6]glucose has previously been used as a precursor, it was unclear whether 2H would be efficiently incorporated from [2H]glucose or lost as D2O. Rose (Rosa sp.) cell-suspension cultures efficiently incorporated 13C from D-[13C6,2H7]glucose into wall polysaccharides with negligible dilution from atmospheric 12CO2. Also, approximately 70% of the 2H atoms in D-[13C6,2H7]glucose were retained during polysaccharide biosynthesis. This shows that relatively few cycles of intermediary metabolism leading to the release of D2O occurred before sugar residues were incorporated into wall polysaccharides. In agreement with these observations, isopycnic centrifugation in caesium trifluoroacetate gradients showed that the hydrated buoyant density of xyloglucan synthesised by rose cells growing on [13C6,2H7]glucose and [13C6]glucose was 3.7 and 2.6% higher, respectively, than in isotopically non-labelled cultures. Thus, [13C,2H]glucose-feeding enabled a 42% better resolution of 'heavy' from 'light' xyloglucan than [13C]glucose-feeding.  相似文献   

16.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

17.
The active oxygen species hydrogen peroxide (H2O2) was detected cytochemically by its reaction with cerium chloride to produce electron-dense deposits of cerium perhydroxides. In uninoculated lettuce leaves, H2O2 was typically present within the secondary thickened walls of xylem vessels. Inoculation with wild-type cells of Pseudomonas syringae pv phaseolicola caused a rapid hypersensitive reaction (HR) during which highly localized accumulation of H2O2 was found in plant cell walls adjacent to attached bacteria. Quantitative analysis indicated a prolonged burst of H2O2 occurring between 5 to 8 hr after inoculation in cells undergoing the HR during this example of non-host resistance. Cell wall alterations and papilla deposition, which occurred in response to both the wild-type strain and a nonpathogenic hrpD mutant, were not associated with intense staining for H2O2, unless the responding cell was undergoing the HR. Catalase treatment to decompose H2O2 almost entirely eliminated staining, but 3-amino-1,2,4-triazole (catalase inhibitor) did not affect the pattern of distribution of H2O2 detected. H2O2 production was reduced more by the inhibition of plant peroxidases (with potassium cyanide and sodium azide) than by inhibition of neutrophil-like NADPH oxidase (with diphenylene iodonium chloride). Results suggest that CeCl3 reacts with excess H2O2 that is not rapidly metabolized during cross-linking reactions occurring in cell walls; such an excess of H2O2 in the early stages of the plant-bacterium interaction was only produced during the HR. The highly localized accumulation of H2O2 is consistent with its direct role as an antimicrobial agent and as the cause of localized membrane damage at sites of bacterial attachment.  相似文献   

18.
Conflicting reports on the heat resistance of Mycobacterium paratuberculosis prompted an examination of the effect of culture medium on this property of the organism. M. paratuberculosis was cultured in three types of media (fatty acid-containing medium 7H9-OADC (oleic acid-albumin-dextrose-catalase supplement) and glycerol-containing media WR-GD and 7H9-GD [glycerol-dextrose supplement]) at pH 6.0. M. paratuberculosis grown under these three culture conditions was then tested for heat resistance in distilled water at 65 degrees C. Soluble proteins and mycolic acids of M. paratuberculosis were evaluated by two-dimensional electrophoresis (2-DE) and thin-layer chromatography (TLC), respectively. The type of culture medium used significantly affected the heat resistance of M. paratuberculosis. The decimal reduction times at 65 degrees C (D(65 degrees C) values; times required to reduce the concentration of bacteria by a factor of 10 at 65 degrees C) for M. paratuberculosis strains grown in 7H9-OADC were significantly higher than those for the organisms grown in WR-GD medium (P < 0.01). When the glycerol-dextrose supplement of WR was substituted for the fatty acid supplement (OADC) in 7H9 medium (resulting in 7H9-GD), the D(65 degrees C) value was significantly lower than that for the organism grown in 7H9-OADC medium (P = 0.022) but higher than that when it was cultured in WR-GD medium (P = 0.005). Proteomic analysis by 2-DE of soluble proteins extracted from M. paratuberculosis grown without heat stress in the three media (7H9-OADC, 7H9-GD, and WR-GD) revealed that seven proteins were more highly expressed in 7H9-OADC medium than in the other two media. When the seven proteins were subjected to matrix-assisted laser desorption ionization-mass spectrometric analysis, four of the seven protein spots were unidentifiable. The other three proteins were identified as GroES heat shock protein, alpha antigen, and antigen 85 complex B (Ag85B; fibronectin-binding protein). These proteins may be associated with the heat resistance of M. paratuberculosis. Alpha antigen and Ag85B are both trehalose mycolyltransferases involved in mycobacterial cell wall assembly. TLC revealed that 7H9-OADC medium supported production of more trehalose dimycolates and cell wall-bound mycolic acids than did WR-GD medium. The present study shows that in vitro culture conditions significantly affect heat resistance, cell wall synthesis, and protein expression of M. paratuberculosis and emphasize the importance of culture conditions on in vitro and ex vivo studies to estimate heat resistance.  相似文献   

19.
Bacillus subtilis 168 trp - was found to be transformable with the tetracycline resistance plasmid pAB124 by electroporation of whole cells, inconsistently and at very low frequencies. Supplementation of the growth medium with glycine, or particularly DL-threonine, produced cells that could be electrotransformed much more efficiently at frequencies up to 2.5 X 103 transformants per μg plasmid DNA. Transformation was optimal with cells grown in medium containing a racemic mixture of the D- and L-isomers of threonine, and no transformants were obtained when pure forms of the D- and L-threonine isomers were used. The cell walls of B. subtilis grown in the presence or absence of D-, L- and DL-threonine had a similar amino acid composition which did not include threonine. A more complex biochemical explanation of the enhancement of electroporation by growth in DL-threonine is likely, and this is discussed. Lysozyme treatments to weaken the cell wall and possibly mimic the effect of DL-threonine did not yield any transformants. The effects of buffer composition and culture incubation time were also determined and the electroporation protocol optimized accordingly. The response of a range of other B. subtilis strains to electroporation by the method produced was found to be variable. In all cases, transformation was verified by recovery of the plasmid DNA from putative transformants.  相似文献   

20.
Chemical Composition of the Cell Walls of Bacillus stearothermophilus   总被引:4,自引:1,他引:3  
Cell walls were isolated by mechanical disruption of mid-log phase cells of Bacillus stearothermophilus NCA 1503-4R grown in Trypticase-yeast extract-fructose medium at 55 C. The cell walls were purified by treatment with sodium dodecyl sulfate (SDS) and incubation with deoxyribonuclease and trypsin. The cell wall peptidoglycan contained glucosamine, muramic acid, alpha, epsilon-diaminopimelic acid, and glutamic acid. Low amounts of glycine, galactosamine, serine, aspartic acid, lysine, and valine were also present. The relative mole ratios of glutamic acid-alpha, epsilon-diaminopimelic acid-glycine-alanine were 1.00:1.26:0.08:1.55. The cell walls were free from ribonucleic acid and deoxyribonucleic acid and contained less than 0.2% chloroform-methanol extractable lipid and 0.09 mumole of phosphorus per mg of cell wall. Teichoic acid was not detected in the cell walls of this organism. Cell walls isolated without treatment with SDS contained 7.5% chloroform-methanol extractable lipid, 0.24 mumole of phosphorus per mg of cell wall, and relatively high concentrations of all amino acids. These results suggest that the extracted lipid is not a cell wall component per se, but a contaminant from the lipoprotein cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号