首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A recent study has shown that, unusually, both the sensory and motor capabilities of an electric fish are omnidirectional. This matching of motor and sensory spaces helps the fish to hunt prey efficiently - particularly important given their energetically costly active sensory system.  相似文献   

2.
A goal of sensory coding is to capture features of sensory input that are behaviorally relevant. Therefore, a generic principle of sensory coding should take into account the motor capabilities of an agent. Up to now, unsupervised learning of sensory representations with respect to generic coding principles has been limited to passively received sensory input. Here we propose an algorithm that reorganizes an agent''s representation of sensory space by maximizing the predictability of sensory state transitions given a motor action. We applied the algorithm to the sensory spaces of a number of simple, simulated agents with different motor parameters, moving in two-dimensional mazes. We find that the optimization algorithm generates compact, isotropic representations of space, comparable to hippocampal place fields. As expected, the size and spatial distribution of these place fields-like representations adapt to the motor parameters of the agent as well as to its environment. The representations prove to be well suited as a basis for path planning and navigation. They not only possess a high degree of state-transition predictability, but also are temporally stable. We conclude that the coding principle of predictability is a promising candidate for understanding place field formation as the result of sensorimotor reorganization.  相似文献   

3.
Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.  相似文献   

4.
Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals.  相似文献   

5.
Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual''s relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.  相似文献   

6.
We have examined the consequence of deleting the first pathfinding neurons to differentiate in the metathoracic leg, cell pair tibial 1 (Ti1) (C. M. Bate, 1976, Nature (London) 260, 54-56; H. Keshishian, 1980, Dev. Biol. 80, 388-397) on the development of two uniquely identifiable follower sensory neurons, and upon the subsequent development of nerve 5B1 in the leg. Following the equivalent of 10-15% of embryonic development in culture the follower sensory neurons were found to have formed topologically normal axonal trajectories in the leg, and to have established contacts with later differentiating sensory and motor axons in an essentially normal fashion. The results show that followers can navigate the route normally taken by the pioneers, and suggest that the pioneers do not have unusual pathfinding capabilities.  相似文献   

7.
Predictions about one''s own action capabilities as well as the action capabilities of others are thought to be based on a simulation process involving linked perceptual and motor networks. Given the central role of motor experience in the formation of these networks, one''s present motor capabilities are thought to be the basis of their perceptual judgments about actions. However, it remains unknown whether the ability to form these action possibility judgments is affected by performance related changes in the motor system. To determine if judgments of action capabilities are affected by long-term changes in one''s own motor capabilities, participants with different degrees of upper-limb function due to their level (cervical vs. below cervical) of spinal cord injury (SCI) were tested on a perceptual-motor judgment task. Participants observed apparent motion videos of reciprocal aiming movements with varying levels of difficulty. For each movement, participants determined the shortest movement time (MT) at which they themselves and a young adult could perform the task while maintaining accuracy. Participants also performed the task. Analyses of MTs revealed that perceptual judgments for participant''s own movement capabilities were consistent with their actual performance- people with cervical SCI had longer judged and actual MTs than people with below cervical SCI. However, there were no between-group differences in judged MTs for the young adult. Although it is unclear how the judgments were adjusted (altered simulation vs. threshold modification), the data reveal that people with different motor capabilities due to SCI are not completely biased by their present capabilities and can effectively adjust their judgments to estimate the actions of others.  相似文献   

8.
Visual- and motor imagery rely primarily on perceptual and motor processes, respectively. In healthy controls, the type of imagery used to solve a task depends on personal preference, task instruction, and task properties. But how does the chronic loss of proprioceptive and tactile sensory inputs from the body periphery influence mental imagery? In a unique case study, we investigated the imagery capabilities of the chronically deafferented patient IW when he was performing a mental rotation task. We found that IW''s motor imagery processes were impaired and that visual imagery processes were enhanced compared to controls. These results suggest that kinaesthetic afferent signals from the body periphery play a crucial role in enabling and maintaining central sensorimotor representations and hence the ability to incorporate kinaesthetic information into the imagery processes.  相似文献   

9.
We have exploited the segregation of motor and sensory axons into peripheral nerve sub-compartments to examine spinal reflex interactions in anaesthetized stingrays. Single, supra-maximal electrical stimuli delivered to segmental sensory nerves elicited compound action potentials in the motor nerves of the stimulated segment and in rostral and caudal segmental motor nerves. Compound action potentials elicited in segmental motor nerves by single stimuli delivered to sensory nerves were increased severalfold by prior stimulation of adjacent sensory nerves. This facilitation of the segmental reflex produced by intense conditioning stimuli decreased as it was applied to more remote segments, to approximately the same degree in up to seven segments in the rostral and caudal direction. In contrast, an asymmetric response was revealed when test and conditioning stimuli were delivered to different nerves, neither of which was of the same segment as the recorded motor nerve: in this configuration, conditioning volleys generally inhibited the responses of motoneurons to stimuli delivered to more caudally located sensory nerves. This suggests that circuitry subserving trans-segmental interactions between spinal afferents is present in stingrays and that interneuronal connections attenuate the influence that subsequent activity in caudal primary afferents can have on the motor elements.  相似文献   

10.
Muscular tension and sensory activity in the flexor apodeme sensory nerve were recorded during stimulation of single motor afferents innervating the M‐C flexor. Muscular tension and unitary sensory activity both varied, depending upon the motor fiber stimulated. Differences in the abililty of individual motor fibers to elicit sensory activity were only partially accounted for by differences in tension development. Some tension afferent units were more readily excited by a muscular contraction elicited by one motor axon than they were by another, even when the tension elicited by the more effective motor fiber was less than that evoked by the less effective efferent.  相似文献   

11.
Wang L  Klein R  Zheng B  Marquardt T 《Neuron》2011,71(2):263-277
It is a long-standing question how developing motor and sensory neuron projections cooperatively form?a common principal grid of peripheral nerve pathways relaying behavioral outputs and somatosensory inputs. Here, we explored this issue through targeted cell lineage and gene manipulation in mouse, combined with in?vitro live axon imaging. In the absence of motor projections, dorsal (epaxial) and ventral (hypaxial) sensory projections form in a randomized manner, while removal of EphA3/4 receptor tyrosine kinases expressed by epaxial motor axons triggers selective failure to form epaxial sensory projections. EphA3/4 act non-cell-autonomously by inducing sensory axons to track along preformed epaxial motor projections. This involves cognate ephrin-A proteins on sensory axons but is independent from EphA3/4 signaling in motor axons proper. Assembly of peripheral nerve pathways thus involves motor axon subtype-specific signals that couple sensory projections to discrete motor pathways.  相似文献   

12.
The character of evoked potentials (EPs) dynamics to signal light stimulus during elaboration of avoidance reaction, allows to assert that during formation of adaptive activity functional balance is established of sensory and integrative-triggering brain parts or functional balance of "motor" and "sensory" integration regimes. Each of the studied subcortical structures is characterized by simultaneous but specific functioning both in the motor and sensory regimes; such conclusion is based on different dynamics of their EPs parameters: the changes of ones correspond to EPs dynamics in the visual cortical area, of the others--in the motor area. During chronic haloperidol administration, the reorganizations of intercentral relations are observed in 10--12 days after the beginning of drug administration. They may be considered as a succession of disturbances of functional balance between "sensory" and "motor" integration regimes: at first the sensory regime domination appears in which subcortical structures are chiefly and uniformly involved (ncd, pall and n. acc.); "motor" regime is weakened; then, as a result, a distortion of the "motor" regime of integration takes place. In this case a bradykinesia is developed.  相似文献   

13.
Normal and pathological oscillatory communication in the brain   总被引:10,自引:0,他引:10  
The huge number of neurons in the human brain are connected to form functionally specialized assemblies. The brain's amazing processing capabilities rest on local communication within and long-range communication between these assemblies. Even simple sensory, motor and cognitive tasks depend on the precise coordination of many brain areas. Recent improvements in the methods of studying long-range communication have allowed us to address several important questions. What are the common mechanisms that govern local and long-range communication and how do they relate to the structure of the brain? How does oscillatory synchronization subserve neural communication? And what are the consequences of abnormal synchronization?  相似文献   

14.
The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.  相似文献   

15.
The chronology of development of spindle neural elements was examined by electron microscopy in fetal and neonatal rats. The three types of intrafusal muscle fiber of spindles from the soleus muscle acquired sensory and motor innervation in the same sequence as they formed--bag2, bag1, and chain. Both the primary and secondary afferents contacted developing spindles before day 20 of gestation. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The basic features of the sensory innervation--first-order branching of the parent axon, separation of the primary and secondary sensory regions, and location of both primary and secondary endings beneath the basal lamina of the intrafusal fibers--were all established by the fourth postnatal day. Cross-terminals, sensory terminals shared by more than one intrafusal fiber, were more numerous at all developmental stages than in mature spindles. No afferents to immature spindles were supernumerary, and no sensory axons appeared to retract from terminations on intrafusal fibers. The earliest motor axons contacted spindles on the 20th day of gestation or shortly afterward. More motor axons supplied the immature spindles, and a greater number of axon terminals were visible at immature intrafusal motor endings than in adult spindles; hence, retraction of supernumerary motor axons accompanies maturation of the fusimotor system analogous to that observed during the maturation of the skeletomotor system. Motor endings were observed only on the relatively mature myofibers; intrafusal myoblasts and myotubes lacked motor innervation in all age groups. This independence of the early stages of intrafusal fiber assembly from motor innervation may reflect a special inherent myogenic potential of intrafusal myotubes or may stem from the innervation of spindles by sensory axons.  相似文献   

16.
Serotonin (5-HT) induces a variety of physiological and behavioral effects in crustaceans. However, the mechanisms employed by 5-HT to effect behavorial changes are not fully understood. Among the mechanisms by which these changes might occur are alterations in synaptic drive and efficacy of sensory, interneurons and motor neurons, as well as direct effects on muscles. We investigated these aspects with the use of a defined sensory-motor system, which is entirely contained within a single abdominal segment and consists of a ‘cuticular sensory neurons–segmental ganglia–abdominal superficial flexor motor neurons–muscles’ circuit. Our studies address the role of 5-HT in altering (1) the activity of motor neurons induced by sensory stimulation; (2) the inherent excitability of superficial flexor motor neurons; (3) transmitter release properties of the motor nerve terminal and (4) input resistance of the muscle. Using en passant recordings from the motor nerve, with and without sensory stimulation, and intracellular recordings from the muscle, we show that 5-HT enhances sensory drive and output from the ventral nerve cord resulting in an increase in the firing frequency of the motor neurons. Also, 5-HT increases transmitter release at the neuromuscular junction, and alters input resistance of the muscle fibers  相似文献   

17.
This study describes time course and ultrastructural changes during axonal degeneration of different neurones within the tympanal nerve of the locust Schistocerca gregaria. The tympanal nerve innervates the tergit and pleurit of the first abdominal segment and contains the axons of both sensory and motor neurones. The majority of axons (approx. 97%) belong to several types of sensory neurones: mechano- and chemosensitive hair sensilla, multipolar neurones, campaniform sensilla and sensory cells of a scolopidial organ, the auditory organ. Axons of campaniform sensilla, of auditory sensory cells and of motor neurones are wrapped by glial cell processes. In contrast, the very small and numerous axons (diameter <1 microm) of multipolar neurones and hair sensilla are not separated individually by glia sheets. Distal parts of sensory and motor axons show different reactions to axotomy: 1 week after separation from their somata, distal parts of motor axons are invaded by glial cell processes. This results in fascicles of small axon bundles. In contrast, distal parts of most sensory axons degenerate rapidly after being lesioned. The time to onset of degeneration depends on distance from the lesion site and on the type of sensory neurone. In axons of auditory sensory neurones, ultrastructural signs of degeneration can be found as soon as 2 days after lesion. After complete lysis of distal parts of axons, glial cell processes invade the space formerly occupied by sensory axons. The rapid degeneration of distal auditory axon parts allows it to be excluded that they provide a structure that leads regenerating axons to their targets. Proximal parts of severed axons do not degenerate.  相似文献   

18.
Chemical sensory signals play a crucial role in eliciting motor behaviors. We now review the different motor behaviors induced by chemosensory stimuli in fish as well as their neural substrate. A great deal of research has focused on migratory, reproductive, foraging, and escape behaviors but it is only recently that the molecules mediating these chemotactic responses have become well-characterized. Chemotactic responses are mediated by three sensory systems: olfactory, gustatory, and diffuse chemosensory. The olfactory sensory neuron responses to chemicals are now better understood. In addition, the olfactory projections to the central nervous system were recently shown to display an odotopic organization in the forebrain. Moreover, a specific downward projection underlying motor responses to olfactory inputs was recently described.  相似文献   

19.
To evaluate the precision of acetylcholinesterase histochemical identification of motor and sensory fascicles, this study presents a systematic observation of human peripheral nerves by Karnovsky and Roots' histochemical method. The results indicate that either of the enzymatic activities of myelinated and unmyelinated fibers was different between motor and sensory fascicles. Fifty-seven percent of the myelinated fibers showed enzymatic activity in the motor fascicles, while none of the myelinated fibers in the sensory fascicles showed enzymatic activity. The unmyelinated fibers showing enzymatic activity in the sensory fascicles were far denser than those in the motor fascicles. Our study demonstrated that the unmyelinated fibers were sympathetic postganglionic unmyelinated fibers. From these results it is concluded that the motor and sensory fascicles may be identified not only according to the enzymatic activities of the myelinated fibers, but also according to the enzymatic activities of the sympathetic postganglionic unmyelinated fibers. An improved histochemical method was suggested for its applicability as a method of intraoperative nerve fascicle identification. Simulated experiments were done on the radial nerves and the median nerves in human cadavers. This improved histochemical process can be completed within 50 minutes and can be used in intraoperative nerve fascicle identification.  相似文献   

20.
Spinal muscular atrophy and hereditary motor and sensory neuropathies are characterized by muscle weakness and atrophy caused by the degenerations of peripheral motor and sensory nerves. Recent advances in genetics have resulted in the identification of missense mutations in TRPV4 in patients with these hereditary neuropathies. Neurodegeneration caused by Ca(2+) overload due to the gain-of-function mutation of TRPV4 was suggested as the molecular mechanism for the neuropathies. Despite the importance of TRPV4 mutations in causing neuropathies, the precise role of TRPV4 in the sensory/motor neurons is unknown. Here, we report that TRPV4 mediates neurotrophic factor-derived neuritogenesis in developing peripheral neurons. TRPV4 was found to be highly expressed in sensory and spinal motor neurons in early development as well as in the adult, and the overexpression or chemical activation of TRPV4 was found to promote neuritogenesis in sensory neurons as well as PC12 cells, whereas its knockdown and pharmacologic inhibition had the opposite effect. More importantly, nerve growth factor or cAMP treatment up-regulated the expression of phospholipase A(2) and TRPV4. Neurotrophic factor-derived neuritogenesis appears to be regulated by the phospholipase A(2)-mediated TRPV4 pathway. These findings show that TRPV4 mediates neurotrophic factor-induced neuritogenesis in developing peripheral nerves. Because neurotrophic factors are essential for the maintenance of peripheral nerves, these findings suggest that aberrant TRPV4 activity may lead to some types of pathology of sensory and motor nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号