首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regularities of their functioning of enzyme, water-soluble and membrane forms, in the systems of the reversed micelles of surfactants in organic solvents are compared. Using as examples gamma-glutamyltransferase (in AOT reversed micelles in octane) and aminopeptidase (in Brij 96 reversed micelles in cyclohexane), the principal difference in the catalytic activity regulation of water-soluble and membrane forms is demonstrated. The catalytic activity of the membrane form depends considerably on the surfactant concentration at the constant degree of hydration, whereas the activity of the water-soluble form is constant under these conditions. The catalytic activity dependence on the surfactant concentration is regarded as a test for enzyme membrane activity.  相似文献   

2.
The catalytic activity and quaternary structure of soluble (s) and membrane (m) forms of angiotensin-converting enzyme (ACE) were studied in reversed micelles of ternary system Aerosol OT--water--octane. The profile of the dependence of the catalytic activity of the two enzyme forms on the degree of surfactant hydration (micellar size) had several optima corresponding to the function of various active oligomeric enzyme forms; the curves for the s- and m-forms of ACE were different. Data of sedimentation analysis prove that in reversed micelles, s-ACE can exist as monomers, dimers, or tetramers depending on the hydration degree, and the m-form is present as dimers and tetramers only. The values of the kinetic parameters for the hydrolysis of the substrate furylacryloyl-Phe-Gly-Gly by all the enzyme forms were determined, and the data indicate that the activity of the m-form is enhanced by oligomerization. The ACE activity strongly depends on the medium; it is higher when ACE is in contact with matrix or other enzyme molecules.  相似文献   

3.
A new microheterogeneous non-aqueous medium for enzymatic reactions, based on reversed micelles of a polymeric surfactant, was suggested. The surfactant termed CEPEI, was synthesized by successive alkylation of poly(ethyleneimine) with cetyl bromide and ethyl bromide and was found to be able to solubilize considerable amounts of water in benzene/n-butanol mixtures. The hydrodynamic radius of polymeric-reversed micelles was estimated to be in the range 22-51 nm, depending on the water content of the system, as determined by means of the quasi-elastic laser-light scattering. Polymeric reversed micelles were capable of solubilizing enzymes (alpha-chymotrypsin and laccase) in nonpolar solvents with retention of catalytic activity. Due to the strong buffering properties of CEPEI over a wide pH range, it could maintain any adjusted pH inside hydrated reversed micelles. It was found that catalytic behavior of enzymes entrapped in polymeric reversed micelles was rather insensitive to the pH of the buffer solution introduced into the system as an aqueous component, but determined mostly by acid-base properties of the polymeric surfactant itself. Both catalytic activity and stability of entrapped alpha-chymotrypsin and laccase were found to increase with increasing water content of the system. Under certain conditions, the entrapment of alpha-chymotrypsin into CEPEI reversed micelles resulted in a considerable increase in catalytic activity and stability as compared to aqueous solution. CEPEI reversed micelles were demonstrated to be promising enzyme carriers for use in membrane reactors. Owing to the large dimensions of CEPEI reversed micelles, they are effectively kept back by a semipermeable membrane, thus allowing an easy separation of the reaction product and convenient recovery of the enzyme.  相似文献   

4.
Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.  相似文献   

5.
Regulation of the membrane active properties of alkaline phosphatase from calf intestinal mucosa in reversed micelles of Aerosol OT (AOT) in octane was studied. The dependence of the catalytic activity on the surfactant concentration at the constant hydration degree, which characterises the membrane activity of enzymes, is modulated through pH variation. The variation may cause conformational changes of the protein molecule, resulting in exposition of anchor groups which provide the interaction of the enzyme with the micellar matrix.  相似文献   

6.
Catalysis by laccase from Coriolus uersicolor solubilized in the ternary systems of surfactant/water/organic solvent type, namely, Aerosol OT/water/octane, Brij 56/water/cyclohexane and egg lecithin/water/octane + pentanol + methanol mixture, has been studied. The laccase activity is found to depend, in principle, not only on the water/surfactant molar ratio, but on the surfactant concentration (with its hydration degree being constant) as well. The following inferences should be emphasized. Firstly, in all the systems under study, the catalytic activity (kcat) of laccase entrapped into surfactant reversed micelles increases more than 50 times (when the surfactant concentration is extrapolated to zero) compared with the kcat value in aqueous solution. Secondly, the catalytic activity (kcat) of laccase entrapped in hydrated Aerosol OT aggregates, having lamellar, reversed cylindrical (hexagonal) and reversed micellar structure, depends greatly on the aggregate type. In other words, the phase transitions, i.e. an alteration in the packing of hydrated Aerosol OT molecules, evokes a sharp reversible change in the enzymatic activity. Thirdly, in the same phase, the catalytic activity of the solubilized enzyme depends on the linear dimensions of water cavities inside the surfactant aggregates (i.e. on the water content in the system under study). All these effects, regulating enzymatic activity, are probably caused by an alteration of the conformational mobility of laccase molecules incorporated into the inner polar cavities inside the surfactant aggregates.  相似文献   

7.
Spectral and catalytic parameters of peroxidase solubilized in the aerosol OT-water-octane system have been studied. The spectrum of peroxidase solubilized in octane with AOT reversed micelles, a degree of surfactant hydration being above 12, is actually identical to that of the enzyme aqueous solution. On the other hand, significant spectral changes have been detected when transferring the enzyme from water to the reversed micelle medium at low degrees of surfactant hydration, precisely [H2O]/[AOT] less than 12. The reversed micelle-entrapped peroxidase catalyses the oxidation of pyrogallol with hydrogen peroxide much more actively (at [H2O]/[surfactant] approximately 13) than that in aqueous solution. The entrapment of peroxidase into surfactant reversed micelles increases precisely the catalytic constant of the reaction, i.e. the virtual reactivity of the enzyme increases ten and hundred times depending on degrees of surfactant hydration and concentration. The systems of reversed micelles may be considered as models of biomembranes. Our findings hence show that enzymes in vivo can be much more catalytically active then it appears possible to reveal in conventional experiments in vitro in aqueous solutions.  相似文献   

8.
Catalysis by laccase from Coriolus uersicolor solubilized in the ternary systems of surfactant/water/organic solvent type, namely, Aerosol OT/water/octane, Brij 56/water/cyclohexane and egg lecithin/water/octane + pentanol + methanol mixture, has been studied. The laccase activity is found to depend, in principle, not only on the water/surfactant molar ratio, but on the surfactant concentration (with its hydration degree being constant) as well. The following inferences should be emphasized. Firstly, in all the systems under study, the catalytic activity (kcat) of laccase entrapped into surfactant reversed micelles increases more than 50 times (when the surfactant concentration is extrapolated to zero) compared with the kcat value in aqueous solution. Secondly, the catalytic activity (kcat) of laccase entrapped in hydrated Aerosol OT aggregates, having lamellar, reversed cylindrical (hexagonal) and reversed micellar structure, depends greatly on the aggregate type. In other words, the phase transitions, i.e. an alteration in the packing of hydrated Aerosol OT molecules, evokes a sharp reversible change in the enzymatic activity. Thirdly, in the same phase, the catalytic activity of the solubilized enzyme depends on the linear dimensions of water cavities inside the surfactant aggregates (i.e. on the water content in the system under study). All these effects, regulating enzymatic activity, are probably caused by an alteration of the conformational mobility of laccase molecules incorporated into the inner polar cavities inside the surfactant aggregates.  相似文献   

9.
The size of the inner water cavity of reversed micelles formed in a triple system 'water-surfactant-organic solvent' can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles 'uncouple' such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceraldehyde-3-phosphate have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.  相似文献   

10.
Conformations of model peptides in membrane-mimetic environments.   总被引:1,自引:0,他引:1       下载免费PDF全文
The influence of a membrane environment on the conformational energetics of a polypeptide chain has been investigated through studies of model peptides in a variety of membrane-mimetic media. Nuclear magnetic resonance (NMR) and circular dichroism (CD) data have been obtained for the peptides in bulk hydrophobic solvents, normal micelles, and reversed micelles. Several hydrophobic peptides which are sparingly soluble in water have been solubilized in aqueous sodium dodecyl sulfate (SDS) solution. NMR and CD data indicate that the micelle-solubilized peptides experience an environment with the conformational impact of bulk methanol, and have decreased conformational freedom. The site of residence of the peptides interacting with the micelles appears to be near the surfactant head groups, in a region permeated by water, and not in the micelle core. Strongly hydrophilic peptides have been solubilized in nonpolar solvents by reversed micelles. These peptides are located in small water pools in close association with the head groups of the surfactant. NMR and CD data show that there is a conformational impact of this interfacial water region on peptide solubilizates distinct from that of bulk water.  相似文献   

11.
Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil as a model reaction. The micellar hydrodynamic radius results reflected, to some extent, the redistribution of surfactant and water after enzyme addition, and the correlation between surfactant formulation, water content (W0), micellar size, and enzyme activity. An adequate modification density of CB was found to be important for the reversed micelles to retain enough hydration capacity and achieve high enzyme activity. Compared with the results in AOT-based reversed micelles, CRL in this micellar system exhibited a different activity behavior versus W0. The optimal pH and temperature of the encapsulated lipase remained unchanged, but the apparent activity was significantly higher than that of the native enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant was found to decrease with increasing surfactant concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0.  相似文献   

12.
The enzymatic and bioelectrocatalytic activity of tyrosinase from mushrooms was studied in a system of reversed micelles formed by Aerosol OT (AOT) in hexane. The optimal catechol oxidising activity of tyrosinase incorporated in reversed micelles was found at a hydration degree of w(0)=25. The catalytic activity was comparable with tyrosinase activity in aqueous media. When immobilized at an Au electrode, either directly or in reversed micelles, tyrosinase exhibited a similar efficiency of the bioelectrocatalytic reduction of O(2) mediated by catechol; however, a rapid decrease in the activity correlated with the destruction of reversed micelles and/or the removal of tyrosinase from the electrode surface. The system containing tyrosinase in reversed micelles with caoutchouk, spread on the surface of the Au electrode and successively covered with a Nafion membrane layer, was found to result in stable tyrosinase-modified electrodes, which were resistant to inactivation in dry acetonitrile. The proposed technique offers possibilities for further development of highly active and stable surfactant/enzyme-modified electrodes for measurements carried out in organic solvents.  相似文献   

13.
Tyrosinase activity in reversed micelles   总被引:1,自引:0,他引:1  
The hydroxylase and oxidase activities of mushroom tyrosinase were studied in both sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane and cetyltrimethylammonium bromide (CTAB)/hexane/chloroform reversed micelles. The enzyme presented its highest activity when the water to surfactant molar ratio (W 0) was 20 for both systems. When entrapped in the AOT reversed micelles, the enzyme activity decreased with the increase in AOT concentration at a constant W 0, and the enzyme not only presented a higher reaction rate related to its oxidase activity but also a shorter lag period related to its hydroxylase activity. The relation between water activity and W 0 revealed that enzyme activity in reversed micelles was more related to the size of the micelles which was determined by W 0 and less to the water activity. Tyrosinase in CTAB reversed micelles showed potential for the analysis of o-diphenols.  相似文献   

14.
Alkaline p-nitrophenylphosphate phosphatase (pNPPase) from the halophilic archaeon Halobacterium salinarum (previously halobium) was solubilized in reversed micelles of cetyltrimethylammonium bromide (CTAB) in cyclohexane with 1-butanol as cosurfactant. The hydrolysis reaction appears to follow Michaelis–Menten kinetics. The dependency of the maximum reaction rate (Vmax) on the water content θ (% v/v) (or ω0 value: molar ratio of water to surfactant concentrations) showed a bell-shaped curve for 0.3 M CTAB, but not for 0.2 M CTAB. The enzyme activity increased with the surfactant concentration at a constant ω0 value (10.27). When the surfactant concentration was increased at a constant θ, the enzyme activity decreased. The enzyme was more stable in reversed micelles than in aqueous media.  相似文献   

15.
Enzymes suspended in organic solvents represent a versatile system for studying the involvement of water in catalytic properties and their flexibility in adapting to different environmental conditions. The extremely halophilic alkaline p-nitrophenylphosphate phosphatase from the archaeon Halobacterium salinarum was solubilized in an organic medium consisting of reversed micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as cosurfactant. Hydrolysis of p-nitrophenylphosphate was nonlinear with time when the enzyme was microinjected into reversed micelles that contained substrate. These data are consistent with a kinetic model in which the enzyme is irreversibly converted from an initial form to a final stable form during the first seconds of the encapsulation process. The model features a rate constant (k) for that transition and separate hydrolysis rates, v(1) and v(2), for the two forms of the enzyme. The enzyme conversion may be governed by the encapsulation process.  相似文献   

16.
Possibilities of a new principle for the homogeneous enzyme immunoassay utilizing the systems of surfactant reversed micelles in organic solvents have been demonstrated taking thyroxine determination as an example. The catalytic activity of an enzyme, solubilized in such systems, is determined by the ratio of geometric dimensions of the micellar matrice and the enzyme molecule. The addition of antibodies against thyroxine to the peroxidase-thyroxine conjugate, solubilized in the system of reversed micelles of aerosol OT in octane, leads to the formation of the immune complex whose size differs substantially from that of the initial enzyme-antigen conjugate. This induces changes in the peroxidase catalytic activity. The addition of free thyroxine to the system stimulates the conjugate release from the immune complex and, consequently, the reduction of the peroxidase activity to the initial level. Sensitivity of the analysis in reversed micellar systems can be regulated by changing the surfactant hydration degree. Substances of different nature (both hydrophobic and hydrophylic) can be solubilized in reverse micellar systems under standard conditions, which allows determination of water insoluble antigens.  相似文献   

17.
The present work deals with a theoretical model of catalysis by enzymes entrapped in reverse micelles. Three aspects of the enzyme-reverse-micelle system have been considered: structure, dynamics and enzyme distribution and catalysis in reverse micelles. A proposed structural model of reverse micelles [El Seoud (1984) in Reverse Micelles (Luisi, P. L. & Straub, B. E., eds.), p. 81, Plenum Press, New York] consists of three domains: surfactant apolar tails, bound water and free water. Dynamics are based on a dynamic equilibrium of association-dissociation that lead one to consider the dispersed polar phase as a pseudo-continuous phase [Luisi, Giomini, Pileni & Robinson (1988) Biochim. Biophys. Acta 947, 207-246]. Enzyme is distributed among the reverse-micelle domains and it expresses a catalytic constant for each one of them. The overall activity is calculated taking into account the volume in which enzyme is solubilized, and expressed as a function of the whole volume (V). The characteristic parameters of reverse micelles, omega 0 (= [H2O]/[surfactant]) and theta (= % water, v/v), were investigated as modulators of enzymic activity. Three basic patterns of modulation by omega 0 were found depending on which domain the enzyme expressed the highest catalytic constant. Combinations of those basic patterns lead to other modulation types that can be found experimentally, such as superactivation. Other combinations predict behaviour patterns not described to date, such as superinhibition. Dependence of catalytic activity on theta was only stated at omega 0 values around a critical value, which coincides with the appearance of free water.  相似文献   

18.
Fusarium solani pisi recombinant cutinase solubilized in reversed micelles of a nonionic surfactant (phosphatidylcholine) in isooctane was used to catalyze the esterification of fatty acids with 2-butanol. Various parameters affecting the catalytic activity of the microencapsulated cutinase, such as pH, wo (molar ratio water/surfactant), temperature and substrate concentration were investigated. Maximal specific activity were obtained with wo=13, at pH 10.7 and 35d`C. The cutinase showed a higher specific activity for short length fatty acids, namely butyric acid. Calculation of the apparent kinetic parameters (km and Vmax) for the synthesis of butyl butyrate, showed a low apparent affinity of the cutinase in phosphatidylcholine reversed micelles for both substrates.  相似文献   

19.
To model the effect of membrane environment on the electron transfer reactions we studied the thermodynamics and kinetics of the reactions of cytochrome c and 2,6-dichlorophenolindophenol with ferri- and ferrocyanide in the reversed micelles cetyltrimethylammonium bromide in chloroform/octan mixture. Incorporation of the protein in micelles leads to increasing the equilibrium constant (K1) up to 300 times. This effect is mainly due to a decrease in the ferrocytochrome c oxidation rate constant in the reaction with ferricyanide. Micellar solubilization of the dye also leads to a marked increase in the equilibrium constant K2. The estimations of the values K1 and K2 in water-alcohol mixtures and in aqueous micellar solutions of surfactant together with kinetical and spectral data show that the increase of K1 and K2 in reversed micelles is caused generally by redox potential changes of low-molecular reagents. The latter change their environment after adsorption on the micellar surface.  相似文献   

20.
Thermostability of alpha-chymotrypsin at normal pressure in reversed micelles depends on both an effective surfactant solvation degree and glycerol content in the system. The difference in alpha-chymotrypsin stability in reversed micelles at various glycerol concentrations [up to 60% (v/v)] was more pronounced at high surfactant degrees of solvation, R >/= 16. After a 1-h incubation at 40 degrees C in "aqueous" reversed micelles (in the absence of glycerol), alpha-chymotrypsin retained only 1% of initial catalytic activity and 10, 22, 59, and 48% residual activity in glycerol-solvated micelles with 20, 30, 50, and 60% (v/v) glycerol, respectively. The explanation of the observed effects is given in the frames of micellar matrix structural order increasing in the presence of glycerol as a water-miscible cosolvent that leads to the decreasing mobility of the alpha-chymotrypsin molecule and, thus the increase of its stability. It was found that glycerol or hydrostatic pressure could be used to stabilize alpha-chymotrypsin in reversed micelles; a lower pressure is necessary to reach a given level of enzyme stability in the presence of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号