首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The baculovirus insect cell expression system (BEVS) was used for the production of self-forming Porcine parvovirus-like particles (VLPs) in serum-free medium. A low multiplicity of infection (MOI) strategy was used to overcome an extra virus amplification step, undesirable in industrial production, and to minimize the virus passage effect. It was confirmed that the time of infection (TOI) and MOI are dependent variables. Higher cell densities were obtained at low MOIs, keeping a constant TOI; however, both volumetric and specific productivities were lower. In synchronous infection, at high MOI, the specific productivity decreased when the cells were infected in the late phase of growth. Product degradation due to cell lysis strongly influenced the optimal time of harvest (TOH). Time of harvest was found to be highly dependent on the MOI, and a direct relationship with the cell yield was obtained.Analysis of the culture medium reveals that glutamine depletion occurs in the late phase of the growth. Supplementation of glutamine to uninfected cell cultures resulted in an increased cell yield. Its addition to cultures infected in the middle phase of the growth curve was also able to restore the productivity levels, but addition to cells in their stationary phase caused no observable effect on product expression. The study clearly shows that for a specific TOI it is not obvious what the correct MOI should be to obtain the best volumetric productivity.  相似文献   

2.
Compounds capable of stimulating soluble guanylate cyclase (sGC) activity might become important new tools to treat hypertension. While rational design of these drugs would be aided by elucidation of the sGC three-dimensional structure and molecular mechanism of activation, such efforts also require quantities of high quality enzyme that are challenging to produce. We implemented the titerless infected-cells preservation and scale-up (TIPS) methodology to express the heterodimeric sGC. In the TIPS method, small-scale insect cell cultures were first incubated with a recombinant baculovirus which replicated in the cells. The baculovirus-infected insect cells (BIIC) were harvested and frozen prior to cell lysis and the subsequent escape of the newly replicated virus into the culture supernatant. Thawed BIIC stocks were ultimately used for subsequent scale up. As little as 1 mL of BIIC was needed to infect a 100-L insect cell culture, in contrast to the usual 1 L of high-titer, virus stock supernatants. The TIPS method eliminates the need and protracted time for titering virus supernatants, and provides stable, concentrated storage of recombinant baculovirus in the form of infected cells. The latter is particularly advantageous for virus stocks which are unstable, such as those for sGC, and provides a highly efficient alternative for baculovirus storage and expression. The TIPS process enabled efficient scale up to 100-L batches, each producing about 200 mg of active sGC. Careful adjustment of expression culture conditions over the course of several 100-L runs provided uniform starting titers, specific activity, and composition of contaminating proteins that facilitated development of a process that reproducibly yielded highly active, purified sGC.  相似文献   

3.
Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N‐terminally His‐tagged NiV M protein in insect cells. A time‐course study demonstrated that the highest yield of recombinant M protein (400–500 μg) was expressed from infected cells 3 days after infection. A single‐step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme‐linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:171–177, 2016  相似文献   

4.
5.
In this report, we compare two different expression systems: baculovirus/Sf9 and stable recombinantDrosophila Schneider 2 (S2) cell lines. The construction of a recombinant S2 cell line is simple and quick, and in batch fermentations the cells have a doubling time of 20 hours until reaching a plateau density of 20 million cells/ml. Protein expression is driven by theDrosophila Metallothionein promoter which is tightly regulated. When expressed in S2 cells, the extracellular domain of human VCAM, an adhesion molecule, is indistinguishable from the same protein produced by baculovirus-infected Sf9 cells. Additionally, we present data on the expression of a seven trans-membrane protein, the dopamine D4 receptor, which has been successfully expressed in both systems. The receptor integrates correctly in the S2 membrane, binds [3H]spiperone with high affinity and exhibits pharmacological characteristics identical to that of the receptor expressed in Sf9 and mammalian cells. The general implications for large scale production of recombinant proteins are discussed.  相似文献   

6.
Production of recombinant proteins in high-density insect cell cultures   总被引:1,自引:0,他引:1  
The effect of the growth phase of Spodoptera frugiperda (Sf9) cells on the production of recombinant proteins (beta-galactosidase and glucocerebrosidase) was investigated. Cells infected with the recombinant Autographa californica nuclear polyhedrosis virus at the late exponential and stationary phases yielded low quantities of expressed protein. Highest enzyme yields were obtained using Sf9 cells from the early exponential phase (0.9 mg beta-galactosidase/10(6) cells and 1.7 mug glucocerebrosidase/10(6) cells). Infection of resuspension of cells collected from various phases of growth in fresh medium resulted in 75% restoration of maximal expression levels. This finding suggested either nutrient limitation or waste product accumulation as the cause of the decrease in productivity at the latter phases of growth. Further experiments revealed that the highest productivity levels could be obtained with cultures of Sf9 cells grown in a fermentor to a cell concentration of 4 x 10(6) mL(-1). The medium needed to be replaced prior to infection with the recombinant virus and supplemented with a mixture of glucose, L-glutamine, and yeastolate ultrafiltrate. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
IL-18作为一种多效性细胞因子,在机体免疫应答及各种生理功能中发挥着重要的调节作用,根据猪IL-18基因序列设计1对引物,将编码猪IL-18的成熟蛋白基因亚克隆到杆状病毒转移载体pFastBacDual中,并在C端融合6个组氨酸标签以利于纯化,然后转化到含穿梭载体Bacmid的感受态细胞DH10Bac中,发生转座作用。将重组质粒转染昆虫细胞,SDS-PAGE可检测到分子量为18 kDa左右的重组蛋白,Western blotting证实该重组蛋白可与兔抗猪IL-18抗体发生特异性反应。纯化后蛋白能明显促进猪T淋巴细胞转化,表明所表达的IL-18具有较高的生物活性。此研究为进一步开发研制新型免疫佐剂奠定了基础。  相似文献   

8.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   

9.
Insect cell culture and the baculovirus vector expression system have emerged to be a promising production technique for heterologous proteins. In this article, expression characteristics for membrane-bound epoxide hydrolase are examined. A generic process is presented whereby cells are grown in serum-free media supplemented with serum and then resuspended in serum-free media to simplify purification after infection. The infected cells retain significant metabolic activity during the postinfection stage. Thus, maintaining nutrient supply during the postinfection period is critical, and a low stirring rate will result in oxygen depletion and shift the metabolism of the infected cells toward lactate production which then lowers product yield. This is the first report indicating that glucose is supplied from sucrose decomposition and then metabolized for viral DNA and recombinant protein production in recombinant baculovirus insect expression system. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
11.
In this communication we report the infection of armyworm Spodoptera frugiperda IPLB-Sf- 21 cells with Anticarsia gemmatalis multicapsid nucleopolyhedrovirus at low multiplicity of infection (MOI). The temporal variation of the extra-cellular virus and of the unstained cell was followed. The series of peaks in the virus concentration and the unstained cells count were used in order to infer the dynamic mechanism of the infection at low MOI. This mechanism can be used as the basis for the future formulation of a mathematical model of the process.  相似文献   

12.
The expression efficiency of the insect cells-baculovirus system used for insecticidal virus production and the expression of medically useful foreign genes is closely related with the dynamics of infection. The present studies develop a model of the dynamic process of insect cell infection with baculovirus at low multiplicity of  相似文献   

13.
14.
The baculovirus‐insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:1–18, 2014  相似文献   

15.
Suspension cultures of Sf-9 cells at different stages of growth were infected with a recombinant baculovirus expressing -galactosidase, using a range of multiplicities of infection (MOI) of 0.05 to 50. Following infection, the cells were resuspended either in the medium in which they had been grown or in fresh medium. Specific -galactosidase yields were not markedly affected by either MOI or medium change in cultures infected in early exponential phase (3×106 cells mL–1). In cultures infected at later growth stages, -galactosidase yields could only be maintained by medium replacement. The possibility that this requirement for medium replacement is due either to the accumulation of an inhibitory byproduct or nutrient limitation was examined. Alanine, a major byproduct of cultured insect cell metabolism, did not significantly reduce recombinant protein yield when added to infected cultures in concentrations of up to 40 mM. Following a factorial design, various nutrient concentrates were added alone or in combination to cultures infected in late exponential phase. Additions that included both yeastolate ultrafiltrate and an amino acid mixture restored specific -galactosidase yields to levels observed at earlier growth stages or in late stages with medium replacement; the addition of these concentrates, by permitting production at higher cell density, led to increases in the volumetric yield of recombinant protein. Together or separately, the concentrates when added to uninfected late exponential phase cultures, lead to a doubling of the maximum total cell protein level normally supported by unamended medium.  相似文献   

16.
A new set of eukaryotic expression vectors was constructed on the basis of baculoviruses. EcoRI fragments S, J, and P with the genes for late viral proteins p35 (polyhedrin), p39, and p10 were cloned from genomic DNA of the nuclear polyhedrosis virus. The promoter regions of these genes were used to construct double-and triple-promoter expression vectors. Baculovirus vectors containing an expression cassette with the cytomegalovirus promoter and the green fluorescent protein reporter gene were designed to express the cloned genes in cultured mammalian cells.  相似文献   

17.
A mathematical model has been developed to describe the growth and infection of insect cells by recombinant baculoviruses. The model parameters were determined from a series of independent experiments involving batch suspension culture. The profiles generated by the model for cell growth, virus production and protein production agree with those observed in experiments. Presently, the model simulates only systems where cells are not growth-limited. The model is useful in aiding the design and optimization of large-scale systems for production of biological insecticides as well as recombinant proteins and in delineating those areas which are limiting the process and require further, more fundamental, investigation.  相似文献   

18.
Summary The polypeptide encoded in the Activator (Ac) element of Zea mays L. has been expressed in Spodoptera frugiperda insect cells using plasmids which carry the strong polyhedrin promoter of the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV). Recombinant AcNPVs with the Ac-cDNA integrated and under the control of the viral polyhedrin promoter have been isolated and their genomes have been partly characterized as to the location of the foreign DNA insert. Upon infection of S. frugiperda cells with the recombinant AcNPV, maize Ac element specific messenger RNAs, as well as a newly synthesized polypeptide with an apparent molecular weight of about 116 kDa, have been detected in extracts of recombinant infected cells. This polypeptide is absent from extracts of wild-type infected cells expressing the polyhedrin polypeptide which can be recognized by the presence of nuclear inclusion bodies. Recombinant infected cells lack this protein. The Ac specific polypeptide is detected by antisera, which have been raised against fusion proteins containing Ac sequences synthesized in Escherichia coli, both in immunoprecipitation and in Western blotting experiments. The Ac specific protein is a nuclear phosphoprotein and represents about 1%–2% of the newly synthesized protein.  相似文献   

19.
Modelling baculovirus infection of insect cells in culture   总被引:1,自引:0,他引:1  
Power JF  Nielsen LK 《Cytotechnology》1996,20(1-3):209-219
Conclusions Infection of insect cells with baculovirus is a potentially attractive means for producing both viral insecticides and recombinant proteins. The continuation of mathematical modelling studies such as those reviewed in this paper are essential in order to realise the full potential of the system. Through mathematical models it is possible to predict complex behaviours such as those observed when infecting cells at low MOI or when propagating virus in a continuous culture system. A purely empirical analysis of the same phenomena is very difficult if not impossible.The present three models are — despite their complexity and the effort that has gone into developing them — all first generation models. They summarise, to a large extent, our present quantitative understanding of the interaction between baculovirus and insect cells, when looked upon as a black box system. The binding and initial infection processes are still quantitatively poorly understood and further work in this area is much needed. On the longer term, a second generation of models is likely to consider interior processes such as viral DNA and RNA accumulation in much more detail using a structured model of the infection cycle.  相似文献   

20.
【目的】p48(ac103)基因在昆虫杆状病毒中高度保守,暗示其具有重要的生物学功能。为了研究该基因的功能,我们首先对该基因的表达特征进行描述。【方法】以杆状病毒代表种——苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)的p48基因为研究对象,利用Bac-to-Bac杆状病毒表达载体系统分别构建了在P48蛋白N-端和C-端融合HA-标签,并且携带绿色荧光蛋白基因和多角体蛋白基因的重组Bacmid。将重组Bacmid转染Sf9细胞,收集含病毒的上清去感染Sf9细胞,在感染后不同时间点收集细胞进行SDS-PAGE电泳,利用商业化的HA抗体进行Western blot分析以检测融合蛋白在昆虫细胞中的表达情况。【结果】用C-端融合HA-标签的重组病毒感染细胞后12h即可检测到一条43kDa左右、能与HA抗体发生特异性结合的蛋白条带,该特异性蛋白的表达一直持续到病毒感染后96h。从感染后48h起一直到96h,均能检测到另外一条约26kDa的蛋白条带也能与HA抗体发生特异性结合。在N-端融合HA-标签的重组病毒感染的细胞中没有检测到与HA抗体特异结合的蛋白。【结论】结果表明,p48基因是个晚期基因,在病毒感染的晚期表达,并且该蛋白在昆虫细胞中表达时N-端可能被剪切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号