首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
To investigate the possible relationship between apoptosis and the ubiquitin pathway we examined the patterns of ubiquitinated proteins in the human breast carcinoma MCF-7 cell line following induction of apoptotic death by sodium butyrate. Apoptosis in these cells was associated with internucleosomal DNA fragmentation and proteolytic cleavage of poly(ADP-ribose) polymerase. By dual in situ antiubiquitin immunofluorescence and chromatin DNA staining, we demonstrated that ubiquitin fluorescence was increased specifically in cells that underwent sodium butyrate-mediated apoptosis. The extent of ubiquitin incorporation into protein conjugates was examined in both adherent (not yet apoptotic) and floating (apoptotic) cell populations. We found that apoptotic cells exhibited enhanced intensity of ubiquitin-immunoreactive conjugates, whereas adherent cells did not. In addition, two-dimensional immunoblot analysis of proteins from apoptotic cells identified a set of isomeric ubiquitinated conjugates located at a pI range of 4. 2 - 4.6 and a Mr approximately of 30 kDa. These data indicate that the ubiquitin pathway may play a role in the sodium butyrate-induced apoptotic program in breast carcinoma cells.  相似文献   

3.
To understand the role of eicosanoids in angiogenesis, we have studied the effect of lipoxygenase metabolites of arachidonic acid on human microvascular endothelial cell (HMVEC) DNA synthesis. Among the various lipoxygenase metabolites of arachidonic acid tested, 5(S)-hydroxyeicosatetraenoic acid (5(S)-HETE) induced DNA synthesis in HMVEC. 5(S)-HETE also stimulated Jak-2, STAT-1, and STAT-3 tyrosine phosphorylation and STAT-3-DNA binding activity. Tyrphostin AG490, a specific inhibitor of Jak-2, significantly reduced tyrosine phosphorylation and DNA binding activity of STAT-3 and DNA synthesis induced by 5(S)-HETE. In addition, 5(S)-HETE stimulated phosphatidylinositol 3-kinase (PI3-kinase) activity and phosphorylation of its downstream targets Akt, p70S6K, and 4E-BP1 and their effector molecules ribosomal protein S6 and eIF4E. LY294002 and rapamycin, potent inhibitors of PI3-kinase and mTOR, respectively, also blocked the DNA synthesis induced by 5(S)-HETE. Interestingly, AG490 attenuated 5(S)-HETE-induced PI3-kinase activity and phosphorylation of Akt, p70S6K, ribosomal protein S6, 4E-BP1, and eIF4E. 5(S)-HETE induced the expression of basic fibroblast growth factor 2 (bFGF-2) in a Jak-2- and PI3-kinase-dependent manner. In addition, a neutralizing anti-bFGF-2 antibody completely blocked 5(S)-HETE-induced DNA synthesis in HMVEC. Together these results suggest that 5(S)-HETE stimulates HMVEC growth via Jak-2- and PI3-kinase-dependent induction of expression of bFGF-2. These findings also reveal a cross-talk between Jak-2 and PI3-kinase in response to 5(S)-HETE in HMVEC.  相似文献   

4.
5.
We evaluated the role of MAPKs on apoptosis induced by butyrate in cells derived from a human fibrosarcoma (2C4). Culture of 2C4 cells in 5% of fetal bovine serum (FBS) induced ERK1/2 and CREB phosphorylation and delayed apoptosis induced by butyrate. Butyrate inhibited phosphorylation of ERK1/2 and CREB. Furthermore, the use of specific inhibitors PD98059 (MEK) and H89 (PKA), which block ERK1/2 and CREB phosphorylation, accelerated butyrate induced cell death in 2C4 cells. The butyrate effect was shown to be dependent on caspase activation, once caspase inhibitors restored phosphorylation of ERK1/2 and CREB in 2C4 cells. However, the proteolytic effect of caspases was not directly on ERK1/2 and CREB proteins. In conclusion, butyrate induced apoptosis in 2C4 cells is regulated by the levels of ERK1/2 and CREB phosphorylation in a caspase dependent mechanism.  相似文献   

6.
7.
Platelet-derived growth factor-BB (PDGF-BB) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). To understand its mitogenic and chemotactic signaling events, we studied the role of cytosolic phospholipase A(2) (cPLA(2)) and the Jak/STAT pathway. PDGF-BB induced the expression and activity of cPLA(2) in a time-dependent manner in VSMC. Arachidonyl trifluoromethyl ketone, a potent and specific inhibitor of cPLA(2), significantly reduced PDGF-BB-induced arachidonic acid release and DNA synthesis. PDGF-BB stimulated tyrosine phosphorylation of Jak-2 in a time-dependent manner. In addition, PDGF-BB activated STAT-3 as determined by its tyrosine phosphorylation, DNA-binding activity, and reporter gene expression, and these responses were suppressed by AG490, a selective inhibitor of Jak-2. AG490 and a dominant-negative mutant of STAT-3 also attenuated PDGF-BB-induced expression of cPLA(2,) arachidonic acid release, and DNA synthesis in VSMC. Together, these results suggest that induction of expression of cPLA(2) and arachidonic acid release are involved in VSMC growth in response to PDGF-BB and that these events are mediated by Jak-2-dependent STAT-3 activation.  相似文献   

8.

Background

Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART). However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART.

Aim

While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined.

Results

Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36) while downregulating the expression of nuclear receptors (FXR and PPARγ) that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17.

Conclusions

The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a novel target in HIV therapy and grounds the development of anti-p17 small molecules or vaccines.  相似文献   

9.

Purpose

Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.

Methods

Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.

Results

Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (siRNA targeting BIP and CHOP) methods, the induction of BIP, PDI, IRE1a, and LC3-II was blocked, but PARP cleavage was markedly enhanced.

Discussion

Taken together, these results suggested that sodium butyrate-induced autophagy was mediated by endoplasmic reticulum stress, and that preventing autophagy by blocking the endoplasmic reticulum stress response enhanced sodium butyrate-induced apoptosis. These results provide novel insights into the anti-tumor mechanisms of butyric acid.  相似文献   

10.
The histone deacetylase inhibitor and potential anti-cancer drug sodium butyrate is a general inducer of growth arrest, differentiation, and in certain cell types, apoptosis. In human CCRF-CEM, acute T lymphoblastic leukemia cells, butyrate, and other histone deacetylase inhibitors caused G2/M cell cycle arrest as well as apoptotic cell death. Forced G0/G1 arrest by tetracycline-regulated expression of transgenic p16/INK4A protected the cells from butyrate-induced cell death without affecting the extent of histone hyperacetylation, suggesting that the latter may be necessary, but not sufficient, for cell death induction. Nuclear apoptosis, but not G2/M arrest, was delayed but not prevented by the tripeptide broad-range caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (zVAD) and, to a lesser extent, by the tetrapeptide 'effector caspase' inhibitors benzyloxycarbonyl-Asp-Glu-Val-Asp.fluoromethylketone (DEVD) and benzyloxycarbonyl-Val-Glu-Ile-Asp.fluoromethyl-ketone (VEID); however, the viral protein inhibitor of 'inducer caspases', crmA, had no effect. Bcl-2 overexpression partially protected stably transfected CCRF-CEM sublines from butyrate-induced apoptosis, but showed no effect on butyrate-induced growth inhibition, further distinguishing these two butyrate effects. c-myc, constitutively expressed in CCRF-CEM cells, was down-regulated by butyrate, but this was not causative for cell death. On the contrary, tetracycline-induced transgenic c-myc sensitized stably transfected CCRF-CEM derivatives to butyrate-induced cell death.  相似文献   

11.
Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.  相似文献   

12.
13.
To produce erythropoietin (EPO), Chinese hamster ovary (CHO) cells were first cultured in a medium containing FBS (growth medium) and then in a serum-free medium containing sodium butyrate (production medium). Sodium butyrate increases recombinant protein production, but also induces apoptosis, which reduces cell viability and productivity. In a previous study, we found that silkworm hemolymph (SH), an insect serum, inhibits the apoptosis of insect and mammalian cells. To overcome sodium butyrate-induced apoptosis, we added SH to growth medium. This pretreatment with SH inhibited the sodium butyrate-induced apoptosis of CHO cells and consequently increased their longevity and their ability to produce EPO. As a result, the volumetric productivity of EPO was increased five-fold. SH was found to inhibit cytochrome c release from mitochondria into the cytosol, and prevented the activation of caspase-3 and other subsequent caspase reactions.  相似文献   

14.
15.
16.
17.
18.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

19.
20.
Photodynamic therapy (PDT), a promising treatment modality, is an oxidative stress that induces apoptosis in many cancer cells in vitro and tumors in vivo. Understanding the mechanism(s) involved in PDT-mediated apoptosis may improve its therapeutic efficacy. Although studies suggest the involvement of multiple pathways, the triggering event(s) responsible for PDT-mediated apoptotic response is(are) not clear. To investigate the role of Bcl-2 in PDT-mediated apoptosis, we employed Bcl-2-antisense and -overexpression approaches in two cell types differing in their responses toward PDT apoptosis. In the first approach, we treated radiation-induced fibrosarcoma (RIF 1) cells, which are resistant to silicon phthalocyanine (Pc 4)-PDT apoptosis, with Bcl-2-antisense oligonucleotide. This treatment resulted in sensitization of RIF 1 cells to PDT-mediated apoptosis as demonstrated by i) cleavage of poly(ADP-ribose) polymerase, ii) DNA ladder formation, iii) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, and iv) DEVDase activity. This treatment also resulted in oligonucleotide concentration-dependent decrease in cell viability and down-regulation of Bcl-2 protein with a concomitant increase in apoptosis. However, the level of Bax, a pro-apoptotic member of Bcl-2 family, remained unaltered. In the second approach, an overexpression of Bcl-2 in PDT apoptosis-sensitive human epidermoid carcinoma (A431) cells resulted in enhanced apoptosis and up-regulation of Bax following PDT. In both the approaches, the increased Bax/Bcl-2 ratio was associated with an increased apoptotic response of PDT. Our data also demonstrated that PDT results in modulation of other Bcl-2 family members in a way that the overall ratio of pro-apoptotic and anti-apoptotic member proteins favors apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号