首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ensemble of structural models of the adduct between cytochrome c and cytochrome c oxidase from Paracoccus denitrificans has been calculated based on the experimental data from site-directed mutagenesis and NMR experiments that have accumulated over the last years of research on this system. The residues from each protein that are at the protein–protein interface have been identified by the above experimental work, and this information has been converted in a series of restraints explicitly used in calculations. It is found that a single static structural model cannot satisfy all experimental data simultaneously. Therefore, it is proposed that the adduct exists as a dynamic ensemble of different orientations in equilibrium, and may be represented by a combination or average of the various limiting conformations calculated here. The equilibrium involves both conformations that are competent for electron transfer and conformations that are not. Long-range recognition of the partners is driven by non-specific electrostatic interactions, while at shorter distances hydrophobic contacts tune the reciprocal orientation. Electron transfer from cytochrome bc 1 to cytochrome c oxidase is mediated through cytochrome c experiencing multiple encounters with both of its partners, only part of which are productive. The number of encounters, and thus the electron transfer rate, may be increased by the formation of a cytochrome bc 1–cytochrome c oxidase supercomplex and/or (in human) by increasing the concentration of the two enzymes in the membrane space. Protein Data Bank Accession numbers The coordinates of the five best structural models for each of the four clusters have been deposited in the Protein Data Bank (PDB ID 1ZYY).  相似文献   

2.
The moth Omphisa fuscidentalis (Lepidoptera, Pyralidae) is a univoltine insect with a larval diapause period lasting up to 9 months. We studied changes in O(2) consumption in conjunction with cytochrome c oxidase activity and cytochrome c oxidase subunit I (cox1) gene expression. O(2) consumption changed within a day, showing a supradian rhythm with a ca.12-h cycle at 25 degrees C. During the first two-thirds of the diapause period, from October to March, O(2) consumption was constant until January and then increased by March. Topical application of methoprene, a juvenile hormone analog (JHA), to diapausing larvae terminated the diapause and was associated with an increase in O(2) consumption rate at diapause termination. In JHA-treated larvae, cytochrome c oxidase activity in fat bodies was high at the beginning of the prepupal period and highest at pupation. cox1 expression in fat bodies displayed a transient peak 8 days after JHA application and peaked in the prepupal period. Taken together, our results show that the break of diapause by JHA is associated with the activation of cox1, bringing about an increase in cytochrome c oxidase activity, followed by an increase in O(2) consumption rate.  相似文献   

3.
The mechanism of electron coupled proton transfer in cytochrome c oxidase (CcO) is still poorly understood. The P(M)-intermediate of the catalytic cycle is an oxoferryl state whose generation requires one additional electron, which cannot be provided by the two metal centres. The missing electron has been suggested to be donated to this binuclear site by a tyrosine residue. A tyrosine radical species has been detected in the P(M) and F* intermediates (formed by addition of H2O2) of the Paraccocus denitrificans CcO using electron paramagnetic resonance (EPR) spectroscopy. From the study of conserved variants its origin was determined to be Y167 which is surprising as this residue is not part of the active site. Upon inspection of the active site it becomes evident that W272 could be the actual donor of the missing electron, which can then be replenished from Y167 or from the Y280-H276 cross link in the natural cycle. To address the question, whether such a direct electron transfer pathway to the binuclear centre exists two tryptophan 272 variants in subunit I have been generated. These variants are characterised by their turnover rates as well as using EPR and optical spectroscopy. From these experiments it is concluded, that W272 is an important intermediate in the formation of the radical species appearing in P(M) and F* intermediates produced with hydrogen peroxide. The significance of this finding for the catalytic function of the enzyme is discussed.  相似文献   

4.
Xavier AV 《FEBS letters》2002,532(3):261-266
Cytochrome c3 has a central role in the energetics of Desulfovibrio sp., where it performs an electroprotonic energy transduction step. This process uses a network of cooperativities, largely based on anti-Coulomb components, resulting from a mechano-chemical energy coupling mechanism. This mechanism provides a model coherent with the data available for the redox chemistry of haem a of cytochrome c oxidase and its link to the activation of protons. A crucial feature of the model is an anti-Coulomb effect that sets the stage for a molecular ratchet, ensuring vectoriality for the redox-driven localised movement of protons across the membrane, against an electrochemical gradient.  相似文献   

5.
Alkaline-induced conformational changes at pH 12.0 in the oxidized as well as the reduced state of cytochrome c oxidase have been systematically studied with time-resolved optical absorption and resonance Raman spectroscopies. In the reduced state, the heme a(3) first converts from the native five-coordinate configuration to a six-coordinate bis-histidine intermediate as a result of the coordination of one of the Cu(B) ligands, H290 or H291, to the heme iron. The coordination state change in the heme a(3) causes the alteration in the microenvironment of the formyl group of the heme a(3) and the disruption of the H-bond between R38 and the formyl group of the heme a. This structural transition, which occurs within 1min following the initiation of the pH jump, is followed by a slower reaction, in which Schiff base linkages are formed between the formyl groups of the two hemes and their nearby amino acid residues, presumably R38 and R302 for the heme a and a(3), respectively. In the oxidized enzyme, a similar Schiff base modification on heme a and a(3) was observed but it is triggered by the coordination of the H290 or H291 to heme a(3) followed by the breakage of the native proximal H378-iron and H376-iron bonds in heme a and a(3), respectively. In both oxidation states, the synchronous formation of the Schiff base linkages in heme a and a(3) relies on the structural communication between the two hemes via the H-bonding network involving R438 and R439 and the propionate groups of the two hemes as well as the helix X housing the two proximal ligands, H378 and H376, of the hemes. The heme-heme communication mechanism revealed in this work may be important in controlling the coupling of the oxygen and redox chemistry in the heme sites to proton pumping during the enzymatic turnover of CcO.  相似文献   

6.
The mechanism of electron-transfer from aluminium tetrasulfonated phthalocyanine triplet state to cytochrome c was investigated in this work. This reaction successfully quenches the dye triplet state due to the formation of complexes between the solute and the protein at the active site. The electron-transfer rate constant is around 3x10(7) s(-1), and is in accordance with previous results for the singlet excited state quenching [C.A.T. Laia, S.M.B. Costa, D. Phillips, A. Beeby. Electron-transfer kinetics in sulfonated aluminum phthalocyanines/cytochrome c complexes, J. Phys. Chem. B 108 (2004) 7506-7514.] in the framework of the Marcus theory, with a reorganization energy equal to 0.94 eV. The complex formation is diffusion controlled, but heterogeneities of the protein surface charge distribution lead to quenching rate constants smaller than predicted on a hard-spheres model with electrostatic interactions. Also the binding equilibrium constant is strongly affected by this phenomenon. Ionic strength plays an important role on the complex formation, but its effect on the unimolecular electron-transfer rate constant is negligible within experimental error.  相似文献   

7.
Stability and apoptotic activity of recombinant human cytochrome c   总被引:1,自引:0,他引:1  
An efficient system for producing human cytochrome c variants is important to help us understand the roles of this protein in biological processes relevant to human diseases including apoptosis and oxidative stress. Here, we describe an Escherichia coli expression system for producing recombinant human cytochrome c. We also characterize the structure, stability, and function of the protein and show its utility for studying apoptosis. Yields of greater than 8 mg of pure protein per liter culture were attained. Circular dichroism spectropolarimetry studies show that the secondary and tertiary structures of the human protein are nearly identical to those of the horse protein, but the human protein is more stable than other eukaryotic cytochromes c. Furthermore, recombinant human cytochrome c is capable of inducing caspase-3 activity in a cell-free caspase activation assay. We use data from this assay along with data from the literature to define the apaf-1 binding site on human cytochrome c.  相似文献   

8.
A rapid separation of the ten nuclearly-encoded subunits of mitochondrial cytochrome c oxidase, and ten out of the eleven subunits of cytochrome bc1, was achieved using a short, 50 mm C18-reversed-phase column. The short column decreased the elution time 4–7 fold while maintaining the same resolution quality. Elution was similar to a previously published protocol, i.e., a water/acetonitrile elution gradient containing trifluoroacetic acid. Isolated subunits were identified by MALDI-TOF. The rapidity of the described method makes it extremely useful for determining the subunit composition of isolated mitochondrial complexes. The method can be used for both analytical and micro-preparative purposes.  相似文献   

9.
A redox-coupled conformational change in Asp51 of subunit I and a hydrogen-bond network connecting Asp51 with the matrix surface have been deduced from X-ray structures of bovine heart cytochrome c oxidase. This has provided evidence that Asp51 may play a role in the proton pumping process. However, the lack of complete conservation of a residue analogous to Asp51, the inclusion of a peptide bond in the hydrogen-bonding network and the lack of apparent involvement of the O2 reduction site have been used as arguments against the involvement of Asp51 in the mechanism of proton pumping. This minireview re-examines these arguments.  相似文献   

10.
A protein binding to the alcohol oxidase 2 upstream activation sequence (AOX2UAS) of the methylotropic yeast, Pichia pastoris, has been purified and identified as cytochrome c (cyt c). Cyt c purified from P. pastoris or Saccharomyces cerevisiae binds to AOX2UAS. Specific point mutations in AOX2UAS abolish cyt c binding. We conclude that yeast cyt c is a sequence-specific DNA-binding protein and may have a regulatory role in the nucleus.  相似文献   

11.
12.
13.
The evolution of two mitochondrial genes, cytochrome b and cytochrome c oxidase subunit II, was examined in several eutherian mammal orders, with special emphasis on the orders Artiodactyla and Rodentia. When analyzed using both maximum parsimony, with either equal or unequal character weighting, and neighbor joining, neither gene performed with a high degree of consistency in terms of the phylogenetic hypotheses supported. The phylogenetic inconsistencies observed for both these genes may be the result of several factors including differences in the rate of nucleotide substitution among particular lineages (especially between orders), base composition bias, transition/transversion bias, differences in codon usage, and different constraints and levels of homoplasy associated with first, second, and third codon positions. We discuss the implications of these findings for the molecular systematics of mammals, especially as they relate to recent hypotheses concerning the polyphyly of the order Rodentia, relationships among the Artiodactyla, and various interordinal relationships.Correspondence to: R.L. Honeycutt  相似文献   

14.
Cytochrome c oxidase is a large intrinsic membrane protein designed to use the energy of electron transfer and oxygen reduction to pump protons across a membrane. The molecular mechanism of the energy conversion process is not understood. Other proteins with simpler, better resolved structures have been more completely defined and offer insight into possible mechanisms of proton transfer in cytochrome c oxidase. Important concepts that are illustrated by these model systems include the ideas of conformational change both close to and at a distance from the triggering event, and the formation of a transitory water-linked proton pathway during a catalytic cycle. Evidence for the applicability of these concepts to cytochrome c oxidase is discussed.  相似文献   

15.
Our previous study documented expression of a male-transmitted cytochrome c oxidase subunit II protein (MCOX2), with a C-terminus extension (MCOX2e), in unionoidean bivalve testes and sperm mitochondria. Here, we present evidence demonstrating that MCOX2 is seasonally expressed in testis, with a peak shortly before fertilization that is independent of sperm density. MCOX2 is localized to the inner and outer sperm mitochondrial membranes and the MCOX2 antibody's epitope is conserved across >65 million years of evolution. We also demonstrate the presence of male-transmitted mtDNA and season-specific MCOX2 spatial variation in ovaries. We hypothesize that MCOX2 plays a role in reproduction through gamete maturation, fertilization and/or embryogenesis.  相似文献   

16.
We identified the human homologues of yCOX18 and yCOX19, two Saccharomyces cerevisiae genes involved in the biogenesis of mitochondrial respiratory chain complexes. In yeast, these two genes are required for the expression of cytochrome c oxidase: Cox18p catalyses the insertion of Cox2p COOH-tail into the mitochondrial inner membrane, and Cox19p is probably involved in metal transport to the intermembrane space. Both hCox18p and hCox19p present significant amino acid identity with the corresponding yeast polypeptides and reveal highly conserved functional domains. In addition, their subcellular localization is analogous to that of the yeast proteins. These data strongly suggest that the human gene products share similar functions with their yeast homologues. These two COX-assembly genes represent new candidates for mutational analysis in patients with isolated COX deficiency of unknown etiology.  相似文献   

17.
We examined the nucleotide and amino acid sequence variation of the cytochrome c oxidase subunit II (COII) gene from 25 primates (4 hominoids, 8 Old World monkeys, 2 New World monkeys, 2 tarsiers, 7 lemuriforms, 2 lorisiforms). Marginal support was found for three phylogenetic conclusions: (1) sister-group relationship between tarsiers and a monkey/ape clade, (2) placement of the aye-aye (Daubentonia) sister to all other strepsirhine primates, and (3) rejection of a sister-group relationship of dwarf lemurs (i.e., Cheirogaleus) with lorisiform primates. Stronger support was found for a sister-group relationship between the ring-tail lemur (Lemur catta) and the gentle lemurs (Hapalemur). In congruence with previous studies on COII, we found that the monkeys and apes have undergone a nearly two-fold increase in the rate of amino acid replacement relative to other primates. Although functionally important amino acids are generally conserved among all primates, the acceleration in amino acid replacements in higher primates is associated with increased variation in the amino terminal end of the protein. Additionally, the replacement of two carboxyl-bearing residues (glutamate and aspartate) at positions 114 and 115 may provide a partial explanation for the poor enzyme kinetics in cross-reactions between the cytochromes c and cytochrome c oxidases of higher primates and other mammals. Correspondence to: R.L. Honeycutt  相似文献   

18.
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed.  相似文献   

19.
Yeast cytochrome c peroxidase (CcP) and horse metmyoglobin (Mb) bind HN3 with similar affinities at 25 degrees C. The pH-independent equilibrium association constants for formation of the CcP.HN3 and Mb.HN3 complexes are (1.05 +/- 0.06)x10(5) and (1.6 +/- 0.8)x10(5) M(-1), respectively. However, the thermodynamic parameters for formation of the two complexes are quite different. The DeltaH0 values for formation of CcP.HN3 and Mb.HN3 are -16.4 +/- 0.7 and -9.0 +/- 0.5 kcal/mol, respectively, and the Delta S0 values are -32 +/- 2 and -16 +/- 2 cal/deg mol, respectively. The proton associated with HN3 is retained in both protein complexes at low pH but dissociates with apparent pKA values of 5.5 +/- 0.2 and > or =8.2 for the Mb.HN3 and CcP.HN3 complexes, respectively. CcP and Mb differ significantly in their reactivity toward the azide anion, N3-. CcP binds N3- very weakly, if at all, and only an upper-limit of 18 +/-5 M(-1) for the pH-independent equilibrium association constant for the CcP.N3- complex can be determined. Mb binds N3- with an association constant of (1.8 +/- 0.1)x10(4) M(-1). The ratio of the equilibrium association constants for HN3 and N3- binding provides a discrimination factor between the neutral and charged forms of the ligand. The discrimination factor is greater than 5800 for CcP but only nine for Mb. Protonation of the distal histidines in the two proteins influences binding of HN3. Protonation of His-64 in Mb enhances HN3 binding due to a gating mechanism while protonation of His-52 in CcP decreases the affinity for HN3 due to loss of base-assisted association of the ligand to the heme iron.  相似文献   

20.
Suppression-subtractive hybridization was used to isolate cDNAs specifically expressed in the brain at the termination of pupal diapause in Agriusconvolvuli. One of the isolated clones shows similarity to the cytochrome c oxidase subunit 1 (COX1) gene. The full-length cDNA was obtained from brain mRNA by rapid amplification of cDNA ends (RACE). The insert is 1.65 kb in length and has an open reading frame of 1.46 kb which encodes a putative protein of 486 amino acid residues. RT-PCR reveals that the mRNA increases dramatically at an early stage of diapause termination. Activity of cytochrome c oxidase in the brain also increases at the same time. The up-regulation of this gene suggests that expression of the COX1 gene and ATP synthesis are initiated in the brain in association with diapause termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号