首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients’ sera, and found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes, and would be of the value as a candidate for the development of HCV vaccines.  相似文献   

2.
Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens.  相似文献   

3.
Tumor cell expansion relies on nutrient supply, and oxygen limitation is central in controlling neovascularization and tumor spread. Monocytes infiltrate into tumors from the circulation along defined chemotactic gradients, differentiate into tumor-associated macrophages (TAMs), and then accumulate in the hypoxic areas. Elevated TAM density in some regions or overall TAM numbers are correlated with increased tumor angiogenesis and a reduced host survival in the case of various types of tumors. To evaluate the role of TAMs in tumor growth, we here specifically eliminated TAMs by in vivo application of dichloromethylene diphosphonate (DMDP)-containing liposomes to mice bearing various types of tumors (e.g., B16 melanoma, KLN205 squamous cell carcinoma, and 3LL Lewis lung cancer), all of which grew in the dermis of syngeneic mouse skin. When DMDP-liposomes were injected into four spots to surround the tumor on day 0 or 5 after tumor injection and every third day thereafter, both the induction of TAMs and the tumor growth were suppressed in a dose-dependent and injection number-dependent manner; and unexpectedly, the tumor cells were rejected by 12 injections of three times-diluted DMDP-liposomes. The absence of TAMs in turn induced the invasion of inflammatory cells into or around the tumors; and the major population of effector cells cytotoxic against the target tumor cells were CD11b+ monocytic macrophages, but not CCR3+ eosinophils or Gr-1+ neutrophils. These results indicate that both the absence of TAMs and invasion of CD11b+ monocytic macrophages resulted in the tumor rejection.  相似文献   

4.
Immunotherapeutic approaches to cancer should focus on novel undertakings that modulate immune responses by synergistic enhancement of anti-tumor immunological parameters. Cancer vaccines should preferably be composed of multiple defined tumor antigen specific B- and T-cell epitopes. The main focus of this article is to briefly review the present status of Her-2/neu vaccine strategies and to describe the innovative strategies developed in my laboratory for a vaccine against HER-2/neu (ErbB-2) with emphasis on the humoral arm of the immune response. Elucidating the underlining mechanisms of anti-tumor effects elicited by peptide vaccines against a self-protein is a requirement for developing an immunotherapeutic strategy that might be effective in human cancer vaccines. Our approach entails the identification of biologically relevant epitopes, establishing relevant in vitro assays for monitoring vaccine efficacy, devising strategies to engineer conformationally dependent sequences, developing highly immunogenic vaccines for an outbred population and delivering the immunogen/vaccine in a safe and efficacious vehicle, utilizing transgenic animal models for assessing tumor development, and developing challenge models using transplantable tumors to study efficacy of vaccine constructs. We have developed a multi-HER-2/neu B-cell epitope approach and shown in preclinical studies that immunization with a combination of two B-cell epitope was more effective in preventing mammary tumors than a single epitope. We have translated that work to the clinic (OSU 0105) in an FDA approved, NCI sponsored “Phase 1 Active Immunotherapy trial with Chimeric and Multi-epitope based peptide vaccine targeting HER-2 oncoprotein and nor-MDP adjuvant in patients with metastatic and/or recurrent solid tumors” at the James Cancer Hospital at the Ohio State University. The correlation between overexpression of HER-2/neu and up-regulation of VEGF has been demonstrated in breast cancer patients. Thus, blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. The hypothesis that combination of anti-angiogenic therapy and tumor immunotherapy of cancer may be synergistic is an important future goal. In this review, I will discuss insights into our preclinical studies that might aid in the design of the next generation of cancer vaccines and become an integrated component of prophylactic/preventive and therapeutic approach.  相似文献   

5.
Allogeneic whole tumour cell vaccines are inherently practical compared with autologous vaccines. Cell lines are derived from allogeneic tumour, grown in bulk and then administered as a vaccine to the patient, following irradiation, which not only prevents any replication but also enhances antigen presentation. Protection is believed to occur through the presentation of antigens shared between the syngeneic and allogeneic tumours. Although cytokine-transfected tumour whole cell vaccines have been used clinically, little data is available comparing the effects of immunomodulatory cytokine-transfection directly on the same cells when used as both an allogeneic and autologous vaccine. To address this, weakly immunogenic B16-F10 (H-2b) murine melanoma was transfected to secrete either GM-CSF, IL-4 or IL-7. Prophylactic vaccination of both syngeneic C57/BL6 (H-2b) (B6) and allogeneic C3H/Hej (H-2k) (C3H) mice showed the effects of transfected cytokine varied between models. Both GM-CSF and IL-7 significantly (P<0.05) increased the levels of protection within syngeneic B6 mice, but had a diminished effect (P>0.05) within C3H allogeneic mice. Allogeneic B16-F10 cells and syngeneic K1735 cells generated CTL against K1735 suggesting cross-reactive immunity. Using cells labeled with fluorescent dye we demonstrate that irradiated vaccines, of either syngeneic or allogeneic origin, appear to generate potent immune responses and fragments of either vaccine remain at the injection site for up to 9 days. This study shows that protection can be enhanced in vivo by using transfected cytokine, but suggests that irradiated whole cell vaccines, of either tissue-type, are rapidly processed. This leads to the conclusion that the cytokine effects are transient and thus transfection with cytokine may be of limited long-term use in situ.  相似文献   

6.
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2+ tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369–377, 435–443 and 689–697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4+ T cells and antibodies are important components. S. Vertuani and C. Triulzi contributed equally to this work.  相似文献   

7.
Hepatitis C(HCV) genome is highly variable,particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene.The variability of HCV genome has been a major obstacle for de-veloping HCV vaccines.Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes,we synthesized an minigene of HCV-derived multi-epitope peptide an-tigen(CMEP) ,which contains 9 B-cell HVR1 mimotopes in E2,2 conserved CTL epitopes in C,1 conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3.This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP.The immunogenic properties of CEMP were characterized by HCV infected patients' sera,and found that the reactivity frequency reached 75%.The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%.Meanwhile,we constructed an HCV DNA vaccine candidate,plasmid pVAX1.0-st-CMEP carrying the recombinant gene(st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene.Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody,which was of the same cross reactivity as the fusion protein GST-CMEP.Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes,and would be of the value as a candidate for the development of HCV vaccines.  相似文献   

8.
Chemotherapy is the basis of treatment of paracoccidioidomycosis in its various forms. Depending on the Paracoccidioides brasiliensis virulence, the status of host immunity, the degree of tissue involvement and fungal dissemination, treatment can be extended for long periods with an alarming frequency of relapses. Association of chemotherapy with a vaccine to boost the cellular immune response seemed a relevant project not only to reduce the time of treatment but also to prevent relapses and improve the prognosis of anergic cases. The candidate immunogen is the gp43 major diagnostic antigen of P.␣brasiliensis and more specifically its derived peptide P10, carrying the CD4+ T-cell epitope. Both gp43 and P10 protected Balb/c mice against intratracheal infections with virulent P. brasiliensis strain. P10 as single peptide or in a multiple-antigen-peptide (MAP) tetravalent construction was protective without adjuvant either by preimmunization and intratracheal challenge or as a therapeutic agent in mice with installed infection. P10 showed additive protective effects in drug-treated mice stimulating a Th-1 type immune response with high IFN-γ and IL-12. P10 and few other peptides in the gp43 were selected by Tepitope algorithm and actually shown to promiscuously bind several prominent HLA-DR molecules suggesting that a peptide vaccine could be devised for a genetically heterogenous population. P10 was protective in animals turned anergic, was effective in a DNA minigene vaccine, and increased the protection by monoclonal antibodies in Balb/c mice. DNA vaccines and peptide vaccines are promising therapeutic tools to be explored in the control of systemic mycoses.  相似文献   

9.
Leishmaniasis is a neglected disease with an estimated 12 million infected people. The recent completion of the sequencing of the Leishmania major genome has opened opportunities for the identification of targets for vaccine development. We present here the first attempt at identifying novel vaccine candidates by whole genome analysis. We predicted CD8+ T cell epitopes from the L. major proteome and validated in vivo in mice the immunogenicity of some of the best predicted epitopes. Consensus epitope predictions from 8272 annotated protein sequences with 5–8 different algorithms allowed the identification of 78 class I CD8+ epitopes. BALB/c mice were immunized with 26 synthetic peptides corresponding to the most likely epitopes. Fourteen (54%) resulted immunogenic, with eight being strong inducers of T cell IFNγ production. None of the proteins from which the epitopes are derived are differentially expressed, only two may be surface proteins, eight have putative enzymatic, and metabolic activities. These epitopes and proteins represent new antigen candidates for further studies. While pathogen genomes have not yet delivered their full promise in terms of human health applications, our study opens the way for extensive genome mining for antigen identification and vaccine development against Leishmania and other pathogens.  相似文献   

10.
Survivin is an intracellular tumor-associated antigen that is broadly expressed in a large variety of tumors and also in tumor associated endothelial cells but mostly absent in differentiated tissues. Naked DNA vaccines targeting survivin have been shown to induce T cell as well as humoral immune responses in mice. However, the lack of epitope-specific CD8+ T cell detection and modest tumor protection observed highlight the need for further improvements to develop effective survivin DNA vaccination approaches. Here, the efficacy of a human survivin DNA vaccine delivered by intradermal electroporation (EP) was tested. The CD8+ T cell epitope surv20–28 restricted to H-2 Db was identified based on in-silico epitope prediction algorithms and binding to MHC class I molecules. Intradermal DNA EP of mice with a human survivin encoding plasmid generated CD8+ cytotoxic T lymphocyte (CTL) responses cross-reactive with the mouse epitope surv20–28, as determined by intracellular IFN-γ staining, suggesting that self-tolerance has been broken. Survivin-specific CTLs displayed an activated effector phenotype as determined by CD44 and CD107 up-regulation. Vaccinated mice displayed specific cytotoxic activity against B16 and peptide-pulsed RMA-S cells in vitro as well as against surv20–28 peptide-pulsed target cells in vivo. Importantly, intradermal EP with a survivin DNA vaccine suppressed angiogenesis in vivo and elicited protection against highly aggressive syngeneic B16 melanoma tumor challenge. We conclude that intradermal EP is an attractive method for delivering a survivin DNA vaccine that should be explored also in clinical studies.  相似文献   

11.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

12.
Survivin is a tumor-associated antigen (TAA) that has significant potential for use as a cancer vaccine target. To identify survivin epitopes that might serve as targets for CTL-mediated, anti-tumor responses, we evaluated a series of survivin peptides with predicted binding to mouse H2-Kb and human HLA-A*0201 antigens in peptide-loaded dendritic cell (DC) vaccines. H2-Kb-positive, C57BL/6 mice were vaccinated using syngeneic, peptide-loaded DC2.4 cells. Splenocytes from vaccinated mice were screened by flow cytometry for binding of dimeric H2-Kb:Ig to peptide-specific CD8+ T cells. Two survivin peptides (SVN57–64 and SVN82–89) generated specific CD8+ T cells. We chose to focus on the SVN57–64 peptide because that region of the molecule is 100% homologous to human survivin. A larger peptide (SVN53–67), containing multiple class I epitopes, and a potential class II ligand, was able to elicit both CD8+ CTL and CD4+ T cell help. We tested the SVN53–67 15-mer peptide in a therapeutic model using a peptide-loaded DC vaccine in C57BL/6 mice with survivin-expressing GL261 cerebral gliomas. This vaccine produced significant CTL responses and helper T cell-associated cytokine production, resulting in a significant prolongation of survival. The SVN53–67 vaccine was significantly more effective than the SVN57–64 core epitope as a cancer vaccine, emphasizing the potential benefit of incorporating multiple class I epitopes and associated cytokine support within a single peptide.  相似文献   

13.

Background

The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.

Methodology/Principal Findings

BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.

Conclusion/Significance

Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.  相似文献   

14.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

15.
Activation of tumor-reactive T lymphocytes is a promising approach for the prevention and treatment of patients with metastatic cancers. Strategies that activate CD8+ T cells are particularly promising because of the cytotoxicity and specificity of CD8+ T cells for tumor cells. Optimal CD8+ T cell activity requires the co-activation of CD4+ T cells, which are critical for immune memory and protection against latent metastatic disease. Therefore, we are developing “MHC II” vaccines that activate tumor-reactive CD4+ T cells. MHC II vaccines are MHC class I+ tumor cells that are transduced with costimulatory molecules and MHC II alleles syngeneic to the prospective recipient. Because the vaccine cells do not express the MHC II-associated invariant chain (Ii), we hypothesized that they will present endogenously synthesized tumor peptides that are not presented by professional Ii+ antigen presenting cells (APC) and will therefore overcome tolerance to activate CD4+ T cells. We now report that MHC II vaccines prepared from human MCF10 mammary carcinoma cells are more efficient than Ii+ APC for priming and boosting Type 1 CD4+ T cells. MHC II vaccines consistently induce greater expansion of CD4+ T cells which secrete more IFNγ and they activate an overlapping, but distinct repertoire of CD4+ T cells as measured by T cell receptor Vβ usage, compared to Ii+ APC. Therefore, the absence of Ii facilitates a robust CD4+ T cell response that includes the presentation of peptides that are presented by traditional APC, as well as peptides that are uniquely presented by the Ii vaccine cells.  相似文献   

16.
Disrupting tumor-mediated mechanisms suppressing host immunity represents a novel approach to tumor immunotherapy. Depletion of regulatory T cells (Tregs) increases endogenous anti-tumor immunity and the efficacy of active immunotherapy in experimental tumor models. HLA-A2.1/HLA-DR1 (A2.1/DR1) × BALB- neuT + (neuT +) triple transgenic mice represent an improvement over neuT + mice for evaluating vaccination regimens to overcome tolerance against HER-2/neu. We questioned whether depletion of Tregs with Denileukin diftitox (Ontak) enhances the efficacy of a therapeutic vaccine consisting of HER-2(85–94) (p85) CTL and HER-2(776–790) (p776) Th peptides against the growth of TUBO.A2 transplantable tumor in male A2.1/DR1 × neuT + Tg mice. While the therapeutic vaccine primed the tumor-reactive CD8+ CTLs and CD4+ effector T lymphocytes (Teffs) compartment, inducing activation, tumor infiltration, and tumor rejection or delay in tumor growth, treatment with Ontak 1 day prior to vaccination resulted in enhanced CD4+ and CD8+ T-cell-mediated vaccine-specific immune responses in the periphery. This was closely associated with greater infiltration and a striking change in the intratumor balance of Tregs and vaccine-specific CTLs/Teffs that directly correlated with markedly enhanced antitumor activity. The data suggest that Tregs control both CD4+ and CD8+ T-cell activity within the tumor, emphasize the importance of the intratumor ratio of vaccine-specific lymphocytes to Tregs, and demonstrate significant inversion of this ratio and correlation with tumor rejection during Ontak/vaccine immunotherapy.  相似文献   

17.
In order to develop immunotherapy strategies that are based on eliciting immune responsiveness to the self-antigen, human carcinoembryonic antigen (CEA), we examined whether cytotoxic T lymphocyte (CTL) activity against CEA could be elicited in CEA-transgenic and nontransgenic mice. CEA-transgenic [C57BL/6-TGN(CEAGe)18FJP] and nontransgenic mice were primed with CEA-transfected syngeneic fibroblasts in combination with Corynebacterium parvum. Spleen cells from immunized mice were cultured with irradiated syngeneic MC-38 colon carcinoma cells transfected with CEA (MC-38.CEA) as stimulators prior to the measurement of CTL activity. Primed nontransgenic spleen cells showed augmented CTL activity against MC-38.CEA cells as compared with control parental MC-38 cells, nontransfected or transfected with vector only. Moreover, primed CEA transgenic spleen cells showed augmented CTL activity against MC-38.CEA cells that was similar to that observed in nontransgenic mice. All CTL clones derived from either transgenic or nontransgenic mice showed cross-reactivity with MC-38 cells expressing the CEA-related antigen, nonspecific cross-reacting antigen, but not biliary glycoprotein. CEA-specific CTL clones were not identified. Adoptive transfer of cloned CTL resulted in inhibition of MC-38.CEA but not MC-38.BGP tumor growth. Tumor cures were elicited in mice treated with a combination of cloned CTL and cyclophosphamide. Histopathological examination of CEA-expressing colons from either immunized mice or recipients of cloned CTL did not reveal any autoimmune reactions. These studies demonstrate that CTL recognizing cross-reactive class I epitopes on the CEA molecule can be induced in transgenic mice. The expression of these epitopes on tumor cells creates effective targets for CTL in vivo without inducing adverse reactions in CEA-expressing normal tissues. Since anti-CEA CTL have been generated in humans, CEA-transgenic mice may be a useful model to study vaccines that are based on CTL effector mechanisms. Received: 7 January 2000 / Accepted: 8 March 2000  相似文献   

18.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

19.
Prostatic acid phosphatase (PAP) has been investigated as the target of several antigen-specific anti-prostate tumor vaccines. The goal of antigen-specific active immunotherapies targeting PAP would ideally be to elicit PAP-specific CD8+ effector T cells. The identification of PAP-specific CD8+ T-cell epitopes should provide a means of monitoring the immunological efficacy of vaccines targeting PAP, and these epitopes might themselves be developed as vaccine antigens. In the current report, we hypothesized that PAP-specific epitopes might be identified by direct identification of pre-existing CD8+ T cells specific for HLA-A2-restricted peptides derived from PAP in the blood of HLA-A2-expressing individuals. 11 nonamer peptides derived from the amino acid sequence of PAP were used as stimulator antigens in functional ELISPOT assays with peripheral blood mononuclear cells from 20 HLA-A2+ patients with prostate cancer or ten healthy blood donors. Peptide-specific T cells were frequently identified in both groups for three of the peptides, p18–26, p112–120, and p135–143. CD8+ T-cell clones specific for three peptides, p18–26, p112–120, and p299–307, confirmed that these are HLA-A2-restricted T-cell epitopes. Moreover, HLA-A2 transgenic mice immunized with a DNA vaccine encoding PAP developed epitope-specific responses for one or more of these three peptide epitopes. We propose that this method to first identify epitopes for which there are pre-existing epitope-specific T cells could be used to prioritize MHC class I-specific epitopes for other antigens. In addition, we propose that the epitopes identified here could be used to monitor immune responses in HLA-A2+ patients receiving vaccines targeting PAP to identify potentially therapeutic immune responses.  相似文献   

20.
 We have investigated the effect of interleukin-2 (IL-2) secretion by KHT sarcoma cells upon their vaccine potential in syngeneic C3Hf/He mice. Parental KHT tumor cells were transfected with the plasmid pBCMG-neo-mIL-2 to obtain a transfectant KHT-2-3-7 that secreted 20 units IL-2. KHT-2-3-7 cells elicited protective immunity in only 10% of the immunized mice, compared with 40% of mice immunized with irradiated parental KHT tumor colls. To minimize the contribution of potential antigenic differences between the KHT-2-3-7 transfectant and parental KHT cells, a clone of KHT cells (KHT-C21) was isolated and used in subsequent experiments. A number of transfectants secreting various amounts of IL-2, ranging from 2 units to 200 units, were obtained following transfection of KHT-C21 cells with plasmid pBCMG-neo-mIL-2. Two of the transfectants, C21-13-4 and C21-1, each secreting 200 units IL-2, elicited protective immunity in a significantly lower fraction of mice than did irradiated KHT-C21 parental tumor cells (P<0.0l). Two other transfectants C21-10 and C21-11, secreting 2 and 23 units IL-2 respectively, also showed lower vaccine potential compared with the parental KHT-C21 clone (P<0.05). To minimize further any role for potential antigenic or other molecular differences between the individual transfectants and the clonal KHT-C21 parental cells in lowering their vaccine efficacy, mice were immunized with a mixture of five transfectants, and the results again showed significantly lower vaccine efficacy of the mixture compared with the irradiated parental C21 cells (P<0.0l). In view of published studies showing enhanced or unchanged efficacy of IL-2-secreting tumor cell vaccines, our observation of the lower vaccine potential of IL-2-transduced tumor cells indicates that the vaccine efficacy of IL-2-secreting tumor cells depends on the individual tumor. Such variability/unpredictability would hamper the clinical use of IL-2-secreting tumor cells as vaccines. Received: 23 April 1996 / Accepted: 7 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号