首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physicochemical surface properties, related to electrostatic, van der Waals and Lewis acid–base interactions, of five Listeria monocytogenes strains isolated from pork-processing environments were determined after two subcultures at 37 °C and a final culture at three temperatures: 37, 10 and 4 °C. Three strains (Lm1, Lm114 and Lm191) were genetically related while two were unrelated (Lm25 and Lm74) according to Apa I-macrorestriction and pulsed-field gel electrophoresis (PFGE) typing.
Listeria monocytogenes cell surfaces were generally negatively charged regardless of pH and tended to be hydrophilic due to a basic character. However, variable physicochemical surface properties of the five Listeria monocytogenes isolates were observed after growth at 37 °C. After growth at 10 °C, the three genetically related isolates exhibited similar surface properties and were slightly more hydrophilic and basic than the others. After growth at 4 °C, the five isolates displayed the same weak affinity for all kinds of solvents and low electrophoretic mobility values.
A sharp decrease of temperature and subsequent growth of various Listeria monocytogenes strains resulted in loss of the physicochemical surface property variability, which may suggest the role of common chill adaptation mechanisms affecting surface properties.  相似文献   

2.
Nine of 37 cellulolytic bacterial isolates obtained from landfill waste could be easily differentiated on the basis of gross morphological characteristics. Four isolates were selected for further characterization and on the basis of initial results appear to be previously unidentified cellulolytic species of bacteria. An aerotolerant anaerobic, cellulolytic Clostridium and three obligately anaerobic cellulolytic Eubacterium isolates are described. The Clostridium has an unusually high pH optimum for growth of 7.7. The optimum temperature for growth is 50°C. The pH growth optimum of each of the Eubacterium isolates is around pH 7.0 while temperature optima are 37° 45° and 50°C for LFI, LF4 and LF5 respectively. Most isolates had growth optima in the thermophilic range. The ease with which apparently previously unidentified species could be isolated is a reflection of the unique and highly variable, heterogeneous environment within landfill waste.  相似文献   

3.
Fifty bacterial strains able to grow at pH 10 and 0°C were isolated from soils, and growth characteristics of three selected strains were investigated. Strain 207, which showed the best growth rate of all the isolates at the conditions described above, could grow at a temperature of −5 to 39°C at pH 8.5. The optimum pH for this strain changed from 9.5 at 10°C to 9.0 at 20°C.  相似文献   

4.
The production and stability of pediocin N5p from Pediococcus pentosaceus , isolated from wine, were examined in grape juice medium. Maximum growth and higher titre (4000 U ml-1) were observed at a initial pH of 7·5 and 30°C. The activity of the inhibitory substance was stable between pH values from 2·0 to 5·0 at 4° and 30°C. At pH 10·0 it was completely inactivated. When submitted to 30 min at 80°, 100° and 115°C, maximal stability was observed at pH 2·0. Ethanol up to 10% did not affect pediocin activity at acid pH, nor did 40–80 mg 1-1 SO2, independently or combined with different ethanol concentrations, affect inhibitory activity.  相似文献   

5.
Four mesophilic, irregular, rod-shaped methanogenic bacteria were isolated from decomposing refuse recovered from laboratory-scale reactors and a municipal solid waste landfill. H2/CO2 was the only substrate on which the isolates could grow in a complex medium. Isolates grew between either 25° or 30° and 45°C and between pH 6 and 8. One isolate exhibited growth at pH 5. Growth of each isolate was enhanced by yeast extract and inhibited by anaerobic sewage sludge supernatant fluid. No isolate showed greater than 25% lysis on exposure to 1% sodium dodecyl sulphate (SDS) for 24 h, as is typical of methanogens with a proteinaceous cell wall. The physiological traits of the methanogens isolated here are similar to many previously characterized isolates.  相似文献   

6.
This paper describes the properties of rhizobia from extreme soil environments which are characterized by high temperatures, salt concentrations and also rather extreme pH values due to the contamination by spray water from the sea. Coastal sand dunes are such extreme habitats which support a variety of microorganisms. To explore stress‐tolerant rhizobia, ten rhizobial strains were isolated from five wild legumes from two dune systems of the southwest coast of India. They were tested for growth performance or tolerance at a wide range of temperatures (30–55 °C), salinity (0.1–4.5 % w/v) and initial pH values (3.5–11). Growth of five isolates was highest between 30–40 °C, while four isolates showed considerable growth up to 2.5 % salinity (at 35 °C). All isolates demonstrated elevated growth at an initial pH of between 5–6 (at 35 °C and 2 % salinity), while five isolates had additional growth peaks at an initial pH of between pH 7.5–9 indicating alkaline tolerance and were suitable for efficient phosphate solubilization. The stress tolerance traits of these rhizobia are of potential value for strain improvement in agriculture or the bioremediation of soils at elevated temperatures, salinity and extreme pH values, and thus are of high biotechnological importance.  相似文献   

7.
Aims:  To determine the survival and growth characteristics of Cronobacter species ( Enterobacter sakazakii ) in infant wheat-based formulas reconstituted with water, milk, grape juice or apple juice during storage.
Methods and Results:  Infant wheat-based formulas were reconstituted with water, ultra high temperature milk, pasteurized grape or apple juices. The reconstituted formulas were inoculated with Cronobacter sakazakii and Cronobacter muytjensii and stored at 4, 25 or 37°C for up to 24 h. At 25 and 37°C, Cronobacter grew more (>5 log10) in formulas reconstituted with water or milk than those prepared with grape or apple juices ( c. 2–3 log10). The organism persisted, but did not grow in any formulas stored at 4°C. Formulas reconstituted with water and milk decreased from pH 6·0 to 4·8–5·0 after 24 h, whereas the pH of the formulas reconstituted with fruit juices remained at their initial pH values, c. pH 4·8–5·0.
Conclusions:  Cronobacter sakazakii and C. muytjensii can grow in reconstituted wheat-based formulas. If not immediately consumed, these formulas should be stored at refrigeration temperatures to reduce the risk of infant infection.
Significance and Impact of the Study:  The results of this study will be of use to regulatory agencies and infant formula producers to recommend storage conditions that reduce the growth of Cronobacter in infant wheat-based formulas.  相似文献   

8.
Relationships between the growth of certain fungi isolated from city waste and pH and temperature were examined by two methods. The tested isolates showed their maximum growth and sporulation at different pHs while temperature requirements were the same (28°C), except forHumicola grisea (43°C).Cladosporium herbarum andH. grisea showed double pH optima. The ranges of pH and temperature for sporulation were more limited than those for the vegetative growth. Although all the tested isolates showed wide tolerances to pH and temperature, the degree of tolerance varied with the isolates. A considerable change from the initial pH of the liquid medium was noted at the end of the experiment.  相似文献   

9.
The effect of mint ( Mentha piperita ) essential oil (0·5, 1·0, 1·5 and 2·0%, v/w) on Salmonella enteritidis and Listeria monocytogenes in a culture medium and three model foods; tzatziki (pH 4·5), taramosalata (pH 5·0) and pâté (pH 6·8), inoculated at 107 cfu g-1, at 4° and 10°C for ca 1 week was studied. In the culture medium supplemented with the essential oil, no growth was observed over 2 d at 30°C determined by a conductance method with a Malthus 2000 growth analyser. Salmonella enteritidis died in tzatziki in all treatments and declined in the other foods except for pâté at 10°C as judged with viable counts. Listeria monocytogenes populations showed a declining trend towards the end of the storage period but was increased in pâté. Mint essential oil antibacterial action depended mainly on its concentration, food pH, composition, storage temperature and the nature of the micro-organism.  相似文献   

10.
A total of 34 thermophilic isolates identified as members of the genus Thermoactinomyces by a range of chemotaxonomic, microscopic and determinativebiochemical tests, were isolated from two acid soils. Growth studies in shake flask and fermenteridentified the isolates to be moderately acidophilic with growth occurring between pH4·5 and 6·0 with optima at pH 5·0. The isolates differed considerablyfrom known Thermoactinomyces cultures in their pH profile, colony morphology andin several biochemical tests.Extracellular enzyme activities are identified and partiallycharacterized in termsof their thermostability, pH and temperature profiles from crude supernatantfluid samples. Optimal protease, amylase and pullulanase activity was observed at pH5·0–5·5 and 75–80 °C with each showing T (50) values of 10, 30 and 30 min, respectively. A highly thermotolerant extracellularesterase was also identified which retained 50% activity after 8 h at 90°C . This is the firstreport of an acidophilic member of the genus Thermoactinomyces.  相似文献   

11.
Twelve Listeria monocytogenes strains representing seven serovars were heat-treated in physiological saline by a glass capillary tube method. Five strains were treated at 58°, 60° and 62°C, three at 60°, 62° and 64°C and four at 60°C. Heat-treated bacteria were recovered on blood agar in two ways: (1) incubation at 37°C for 7 d; and (2) preincubation at 4°C for 5 d, followed by incubation at 37°C for 7 d. D and z values were determined. Better average recovery and higher D values were obtained when the preincubation procedure was used. The final evaluations of the heat resistance properties of the strains were therefore based on values for preincubated samples. D values recorded at 58°, 60°, 62° and 64°C for preincubated samples were 1.7–3.4, 0.72–3.1, 0.30–1.3 and 0.33–0.68 min, respectively. z values determined were 5.2–6.9°C. D values were compared statistically. Significant differences in heat resistance were noted both between serovars and between strains belonging to the same serovar.  相似文献   

12.
Lactobacillus plantarum BF001 produced plantaricin F in MRS broth but it was detected only after ca a 50-fold concentration. Growth on MRS broth and appearance of plantaricin F were similar under aerobic and anaerobic conditions. No growth occurred at pH 3 or at 4°C. Plantaricin F appeared first at early stationary growth phase (24 h) and was stable thereafter (pH 2). Amounts found in liquid cultures were ca 2–3 times higher than those from solidified MRS medium, and specific activities were ca 6 times higher in liquid culture (48 h). Maximal amounts of plantaricin F were found (48 h) when medium had an initial pH of 4 and growth was at 30°C. Under these conditions, cell growth and fermentation were partially uncoupled. Plantaricin F was not produced endogenously, organic nutrients were necessary. A molecular weight range of 500–3500 Da was indicated. Plantaricin F appears to be a secondary metabolite.  相似文献   

13.
Listeria monocytogenes is a food-borne pathogenic bacterium that can be found in softcheese. At the beginning of cheese ripening, the pH is about 4·85–4·90. The aimof this work was to study the influence of temperature, preincubation temperature (temperature atwhich the inoculum was cultivated) and initial bacterial concentration on the survival of L.monocytogenes (strain Scott A) at pH 4·8. It was demonstrated in an earlier study thatthese factors did influence growth kinetics. Survival studies of L. monocytogenes weredone in a laboratory broth simulating cheese composition. Four test temperatures (2, 6, 10 and14°C) and two preincubation temperatures were studied (30°C or the test temperature). Listeria monocytogenes (strain Scott A) was unable to grow at pH 4·8 under allconditions tested. The time for 10% survival was about 11 and 2 d, at 2°C with preincubationat 2°C and 30°C, respectively; 9 d at 6°C with preincubation at 6°C; 4 d at 6°Cwith preincubation at 30°C; and 1 d at 14°C with preincubation at 14°C or at 30°C.The results show that survival of L. monocytogenes (strain Scott A) at pH 4·8 is notdependent on initial bacterial concentration but on both the test and preincubation temperatures.  相似文献   

14.
Hydrogen ion concentrations (pH) of the digestive tracts of channel catfish were determined for fish of two sizes (892 and 134 g average weight) at two environmental temperatures (28 and 23°C). Acidic conditions (pH 2–4) were present in the stomach contents of all catfish with slightly higher pH values in stomachs of fish at 28°C. The pH increased to slightly alkaline values (pH 7–9) in the duodenum and reached a maximum level (pH 8.6) in the upper intestinal region and then decreased in the lower segments to approach neutrality in the colon. The pH of the bile ranged from 6.1 to 7.5 and was higher in fish maintained at 28°C. Higher environmental temperatures (28°C) resulted in a slightly lower pH throughout the intestinal and colon segments. The larger catfish had lower intestinal length/body weight ratios than smaller catfish. As the result of distension due to increased food consumption, catfish maintained at 28°C had shorter intestinal tracts than catfish maintained at 23°C.  相似文献   

15.
Lipolytic activity of lactobacilli strains and Brochothrix thermosphacta was cellrelated; no significant activity was found in the supernatant fluids. Most lipase was produced during the logarithmic phase of growth and was greatly affected by growth conditions. The optimal temperatures for growth and lipase production were respectively 24°C for B. thermosphacta and 30°C for lactobacilli. For all strains, an initial pH of around 7-0 for the medium and low glucose concentration stimulated lipase production. Tributyrin inhibited both growth and lipase production at a concentration of 0-1% for B. thermosphacta or 1% for lactobacilli. Butyric acid (0-1%) and anaerobic culture inhibited lipase production by B. thermosphacta while these two factors had no effect on enzyme production by lactobacilli.  相似文献   

16.
Low-acid foods (pH ≥ 4.5) are not sufficiently acidic to prevent growth of Clostridium botulinum in otherwise optimal conditions. The combination of sub-optimal pH and sub-optimal temperature may, however, result in a very significant reduction in the risk of growth of this bacterium compared with the risk in optimal conditions. The combined effect of incubation temperatures of 12° and 16°C and pH values between 5·2 and 5·5 on growth and toxin production from spores of Cl. botulinum during incubation for 28 d has been investigated. Growth and formation of toxin (type B) were detected only in medium at pH 5·5 and incubated at 16°C, corresponding to a probability of growth from a single spore within 14 d of 1·6 × 10-5. The probability of growth in 28 d in the remaining conditions was <9 × 10-6. After transfer of inoculated media from 12° to 30°C growth occurred at pH 5·2–5·5 within 19 d. After transfer of inoculated media from 12° to 20°C growth occurred at pH 5·5 and 5·4 but not at pH 5·3 or 5·2 in 40 d. Growth at pH 5·2–5·5 was accompanied by formation of toxin, in most cases of types A or B. In addition to the effect of sub-optimal temperature and pH, chelation of divalent metal ions by citrate may have contributed to inhibition.  相似文献   

17.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   

18.
The effects of temperature and pH on growth and antibiotic production by three isolates of Coniothyrium minitans (Conio, Contans and IVT1), known to produce the macrolide antibiotic macrosphelide A, were examined in modified Czapek Dox broth (MCD). Antibiotic production was determined by incorporating heated (60°C for 5 min) C. minitans spent culture filtrates of MCD (10%, v/v) into potato dextrose broth and assessing the ability of the filtrates to inhibit growth of S. sclerotiorum. All isolates grew over the temperature range of 10–30°C, with the optimum at approximately 15–20°C. Antibiotics were produced by all isolates at 10–30°C. Culture filtrates of MCD from all isolates incorporated into PDB inhibited growth of S. sclerotiorum by >50%, whereas there was a reduction in inhibition at 30°C for Conio and IVT1 but not Contans. All three isolates grew over the pH range of 3–7, with greater biomass production in buffered pH 3–5 than the unbuffered control (pH 4.8) media. Antibiotics were produced by all isolates at pH 3–5. Culture filtrates of MCD from all three isolates grown at pH 3–5 inhibited growth of S. sclerotiorum, with the greatest effect on inhibition observed at pH 3. There were no differences in growth inhibition between isolates at pH 3 and 4, but culture filtrates from Conio grown at pH 5 inhibited S. sclerotiorum more than those of IVT1 grown at the same pH. The significance of these results for biocontrol and optimizing antibiotic production by C. minitans is discussed.  相似文献   

19.
《Nordic Journal of Botany》2008,25(1-2):113-118
Three species of Mallomonas ( M. crassisquama , M. elongata and M. tonsurata ) were isolated from Kachang dam in Daegu, Korea and the individual species were grown as batch cultures in the laboratory. The growth characteristics of these species were investigated at different temperatures and pH. Mallomonas crassisquama exhibited the highest growth rates (μmax) at 18°C, whereas the maximum growth rates of M. elongata and M. tonsurata were observed at 21°C. The maximum growth rates of M. crassisquama and M. elongata were observed at pH 6, and M. tonsurata exhibited maximum growth rate at pH 5. Mallomonas crassisquama and M. tonsurata showed high growth rate between pH 4 and 6, and M. elongata showed high growth rate below pH 7. The three species showed similar growth characteristics except that M. elongata proliferated at a narrower temperature range and at a wider pH range than other two species.  相似文献   

20.
Two chromium-resistant bacteria (IFR-2 and IFR-3) capable of reducing/transforming Cr(VI) to Cr(III) were isolated from tannery effluents. Isolates IFR-2 and IFR-3 were identified as Staphylococcus aureus and Pediococcus pentosaceus respectively by 16S rRNA gene sequence analyses. Both isolates can grow well on 2,000 mg/l Cr(VI) (as K2Cr2O7) in Luria-Bertani (LB) medium. Reduction of Cr(VI) was found to be growth-associated in both isolates and IFR-2 and IFR-3 reduced 20 mg/l Cr(VI) completely in 6 and 24 h respectively. The Cr(VI) reduction due to chromate reductase activity was detected in the culture supernatant and cell lysate but not at all in the cell extract supernatant of both isolates. Whole cells of IFR-2 and IFR-3 converted 24 and 30% of the initial Cr(VI) concentration (1 mg/l) in 45 min respectively at 37°C. NiCl2 stimulated the growth of IFR-2 whereas HgCl2 and CdCl2 significantly inhibited the growth of both isolates. Optimum temperature and pH for growth of and Cr(VI) reduction by both isolates were found to be between 35 and 40°C and pH 7.0 to 8.0. The two bacterial isolates can be good candidates for detoxification of Cr(VI) in industrial effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号