首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gereon Müller 《Morphology》2013,23(2):245-268
This paper addresses the question of how certain kinds of overlapping syncretisms in inflectional paradigms can be accounted for that Baerman et al. (Language 80:807–824, 2005) refer to as convergent/divergent bidirectional syncretisms (based on earlier work by Stump, Inflectional morphology, 2001). Bidirectional syncretism strongly resists accounts in terms of standard rules of exponence (or similar devices) that correlate inflection markers with (often underspecified) morpho-syntactic specifications (such rules are used in many morphological theories; e.g., Anderson, A-morphous morphology, 1992; Halle and Marantz in The view from building, pp. 111–176, 1993; Aronoff, Morphology by itself, 1994; Wunderlich in Yearbook of morphology 1995, pp. 93–114, 1996; and Stump, Inflectional morphology, 2001). The reason is that it is difficult to capture overlapping distributions by natural classes. In view of this, rules of referral have been proposed to derive bidirectional syncretism (Stump, Inflectional morphology, 2001; Baerman et al. (Language 80:807–824, 2005)). In contrast, I would like to pursue the hypothesis that systematic instances of overlapping syncretism ultimately motivate a new approach to inflectional morphology—one that fully dispenses with the assumption that morphological exponents are paired with morpho-syntactic feature specifications (and that therefore qualifies as radically non-morphemic): First, rules of exponence are replaced with feature co-occurrence restrictions (FCRs; Gazdar et al., Generalized Phrase Structure Grammar, 1985). For phonologically determined natural classes of exponents, FCRs state incompatibilites with morpho-syntactic feature specifications. Second, marker competition is resolved by a principle of Phonology-driven Marker Selection (PMS). PMS takes over the role of the Specificity (Blocking, Elsewhere, Panini) Principle of standard analyses. Empirically, the main focus is on Bonan declension; the analysis is subsequently extended to Gujarati conjugation and Latin o-declension, with further remarks on bidirectional syncretism in other inflectional paradigms.  相似文献   

2.
The peristimulus time histogram (PSTH) and its more continuous cousin, the spike density function (SDF) are staples in the analytic toolkit of neurophysiologists. The former is usually obtained by binning spike trains, whereas the standard method for the latter is smoothing with a Gaussian kernel. Selection of a bin width or a kernel size is often done in an relatively arbitrary fashion, even though there have been recent attempts to remedy this situation (DiMatteo et al., Biometrika 88(4):1055–1071, 2001; Shimazaki and Shinomoto 2007a, Neural Comput 19(6):1503–1527, 2007b, c; Cunningham et al. 2008). We develop an exact Bayesian, generative model approach to estimating PSTHs. Advantages of our scheme include automatic complexity control and error bars on its predictions. We show how to perform feature extraction on spike trains in a principled way, exemplified through latency and firing rate posterior distribution evaluations on repeated and single trial data. We also demonstrate using both simulated and real neuronal data that our approach provides a more accurate estimates of the PSTH and the latency than current competing methods. We employ the posterior distributions for an information theoretic analysis of the neural code comprised of latency and firing rate of neurons in high-level visual area STSa. A software implementation of our method is available at the machine learning open source software repository (www.mloss.org, project ‘binsdfc’).  相似文献   

3.
Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213–2221, 2006, 32(11):2775–2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213–2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome.  相似文献   

4.
The class of deterministic ‘Daphnia’ models treated by Diekmann et al. (J Math Biol 61:277–318, 2010) has a long history going back to Nisbet and Gurney (Theor Pop Biol 23:114–135, 1983) and Diekmann et al. (Nieuw Archief voor Wiskunde 4:82–109, 1984). In this note, we formulate the individual based models (IBM) supposedly underlying those deterministic models. The models treat the interaction between a general size-structured consumer population (‘Daphnia’) and an unstructured resource (‘algae’). The discrete, size and age-structured Daphnia population changes through births and deaths of its individuals and through their aging and growth. The birth and death rates depend on the sizes of the individuals and on the concentration of the algae. The latter is supposed to be a continuous variable with a deterministic dynamics that depends on the Daphnia population. In this model setting we prove that when the Daphnia population is large, the stochastic differential equation describing the IBM can be approximated by the delay equation featured in (Diekmann et al., loc. cit.).  相似文献   

5.
Mathematical models of the hypothalamus-pituitary-ovarian axis in women were first developed by Schlosser and Selgrade in 1999, with subsequent models of Harris-Clark et al. (Bull. Math. Biol. 65(1):157–173, 2003) and Pasteur and Selgrade (Understanding the dynamics of biological systems: lessons learned from integrative systems biology, Springer, London, pp. 38–58, 2011). These models produce periodic in-silico representation of luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol (E2), progesterone (P4), inhibin A (InhA), and inhibin B (InhB). Polycystic ovarian syndrome (PCOS), a leading cause of cycle irregularities, is seen as primarily a hyper-androgenic disorder. Therefore, including androgens into the model is necessary to produce simulations relevant to women with PCOS. Because testosterone (T) is the dominant female androgen, we focus our efforts on modeling pituitary feedback and inter-ovarian follicular growth properties as functions of circulating total T levels. Optimized parameters simultaneously simulate LH, FSH, E2, P4, InhA, and InhB levels of Welt et al. (J. Clin. Endocrinol. Metab. 84(1):105–111, 1999) and total T levels of Sinha-Hikim et al. (J. Clin. Endocrinol. Metab. 83(4):1312–1318, 1998). The resulting model is a system of 16 ordinary differential equations, with at least one stable periodic solution. Maciel et al. (J. Clin. Endocrinol. Metab. 89(11):5321–5327, 2004) hypothesized that retarded early follicle growth resulting in “stockpiling” of preantral follicles contributes to PCOS etiology. We present our investigations of this hypothesis and show that varying a follicular growth parameter produces preantral stockpiling and a period-doubling cascade resulting in apparent chaotic menstrual cycle behavior. The new model may allow investigators to study possible interventions returning acyclic patients to regular cycles and guide developments of individualized treatments for PCOS patients.  相似文献   

6.
Changes in natural isotopic composition may be used to reveal metabolic pathways of substrate transformation by microbial communities (Vavilin in Ecol Model 240:84–92, 2012b). Anaerobic oxidation of methane (AOM) by sulfate has been described using a mathematical model based on chemical kinetics, microbial dynamics and equations for 13C isotope accumulation in products as well as their redistribution between substrate and products. Experimental data for two batch cultures that originated from microbial mats covering methane seep chimneys in the Black Sea, previously obtained by Seifert et al. (Org Geochem 37:1411–1419, 2006) and Holler et al. (Env Microbiol Reports 1(5):370–376, 2009), were used to model AOM. During long-time incubation, changes of isotope signatures in CH4 showed that in the Seifert et al. batch tests (low methane concentration), in contrast to the Holler et al. batch tests (high methane concentration), methane production occurred along with methane oxidation. In accordance with the model, apparent zero and first-order kinetics of methane oxidation were valid for the Holler et al. and Seifert et al. batch tests, respectively. The observed change of $ \delta {}^{13}{\text{CH}}_{4} $ was explained by microbial kinetics reflecting that the rate is lower for heavy substrate microbial utilization when compared to light substrate microbial utilization. The model showed that small amounts of methanogenesis will change the carbon isotopic composition of methane because biogenic methane has a distinct isotopic composition and due to the large difference between the maximum specific rates of methane oxidation and production. The estimated biomass doubling time of methane-oxidizers for high and low methane concentration was 408/126 days and 4640/1160 days, respectively, depending on the value of the half-saturation constant K S (5 and 20 mM).  相似文献   

7.
Toxic plants have been used for years in agriculture to control major crop pests. However, the continuous exposure of targeted pests to toxins dramatically increases the rate of resistance evolution (Gassman et al. in Annu Rev Entomol 54:147–163, 2009a; Tabashnik et al. Nat Biotechnol 26:199–202, 2008). To prevent or delay resistance, non toxic host plants can be used as refuges. Our study considers spatial and temporal refuges that are respectively implemented concurrently or alternatively a toxic crop. A conceptual model based on impulsive differential equations is proposed to describe the dynamics of the susceptible and resistant pest populations over time. The mathematical study enlightens threshold values of the proportion of the spatial refuge and key parameters that should help to understand evolution of pest resistance to toxic crop.  相似文献   

8.
The aim of this article is to study cell deformation and cell movement by considering both the mechanical and biochemical properties of the cortical network of actin filaments and its concentration. Actin is a polymer that can exist either in filamentous form (F-actin) or in monometric form (G-actin) (Chen et al. in Trends Biochem Sci 25:19–23, 2000) and the filamentous form is arranged in a paired helix of two protofilaments (Ananthakrishnan et al. in Recent Res Devel Biophys 5:39–69, 2006). By assuming that cell deformations are a result of the cortical actin dynamics in the cell cytoskeleton, we consider a continuum mathematical model that couples the mechanics of the network of actin filaments with its bio-chemical dynamics. Numerical treatment of the model is carried out using the moving grid finite element method (Madzvamuse et al. in J Comput Phys 190:478–500, 2003). Furthermore, by assuming slow deformations of the cell, we use linear stability theory to validate the numerical simulation results close to bifurcation points. Far from bifurcation points, we show that the mathematical model is able to describe the complex cell deformations typically observed in experimental results. Our numerical results illustrate cell expansion, cell contraction, cell translation and cell relocation as well as cell protrusions. In all these results, the contractile tonicity formed by the association of actin filaments to the myosin II motor proteins is identified as a key bifurcation parameter.  相似文献   

9.
In this paper we completely study bifurcations of an epidemic model with five parameters introduced by Hilker et al. (Am Nat 173:72–88, 2009), which describes the joint interplay of a strong Allee effect and infectious diseases in a single population. Existence of multiple positive equilibria and all kinds of bifurcation are examined as well as related dynamical behavior. It is shown that the model undergoes a series of bifurcations such as saddle-node bifurcation, pitchfork bifurcation, Bogdanov–Takens bifurcation, degenerate Hopf bifurcation of codimension two and degenerate elliptic type Bogdanov–Takens bifurcation of codimension three. Respective bifurcation surfaces in five-dimensional parameter spaces and related dynamical behavior are obtained. These theoretical conclusions confirm their numerical simulations and conjectures by Hilker et al., and reveal some new bifurcation phenomena which are not observed in Hilker et al. (Am Nat 173:72–88, 2009). The rich and complicated dynamics exhibit that the model is very sensitive to parameter perturbations, which has important implications for disease control of endangered species.  相似文献   

10.
Following a strategy similar to that used in baker’s yeast (Herrgård et al. Nat Biotechnol 26:1155–1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella typhimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419–425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved ‘community consensus’ reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at http://humanmetabolism.org/ and in SBML format at Biomodels (http://identifiers.org/biomodels.db/MODEL1109130000). This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.  相似文献   

11.
The aim of this work is to extend a previously presented algorithm (Durzinsky et al. 2008b in Computational methods in systems biology, LNCS, vol 5307. Springer, Heidelberg, pp 328–346; Marwan et al. 2008 in Math Methods Oper Res 67:117–132) for the reconstruction of standard place/transition Petri nets from time-series of experimental data sets. This previously reported method finds provably all networks capable to reproduce the experimental observations. In this paper we enhance this approach to generate extended Petri nets involving mechanisms formally corresponding to catalytic or inhibitory dependencies that mediate the involved reactions. The new algorithm delivers the set of all extended Petri nets being consistent with the time-series data used for reconstruction. It is illustrated using the phosphate regulatory network of enterobacteria as a case study.  相似文献   

12.
This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens—mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184–187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803–4807, 1983; Herrera-Estrella et al. in EMBO J 2:987–995, 1983; Vasil in Plant Cell Rep 27:1432–1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.  相似文献   

13.
Displaced starburst amacrine cells (SACs) are retinal interneurons that exhibit GABA A receptor-mediated and Cl ? cotransporter-mediated, directionally selective (DS) light responses in the rabbit retina. They depolarize to stimuli that move centrifugally through the receptive field surround and hyperpolarize to stimuli that move centripetally through the surround (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006). They also play a key role in the activity of DS ganglion cells (DS GC; Amthor et al, Vis Neurosci 19:495–509 2002; Euler et al, Nature 418:845–852, 2002; Fried et al, Nature 420:411– 414, 2002; Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799 2006; Yoshida et al, Neuron 30:771–780, 2001). In this paper we present a model of strong DS behavior of SACs which relies on the GABA-mediated communication within a tightly interconnected network of these cells and on the glutamate signal that the SACs receive from bipolar cells (a presynaptic cell that receives input from cones). We describe how a moving light stimulus can produce a large, sustained depolarization of the SAC dendritic tips that point in the direction that the stimulus moves (i.e., centrifugal motion), but produce a minimal depolarization of the dendritic tips that point in the opposite direction (i.e., centripetal motion). This DS behavior, which is quantified based on the relative size and duration of the depolarizations evoked by stimulus motion at dendritic tips pointing in opposite directions, is robust to changes of many different parameter values and consistent with experimental data. In addition, the DS behavior is strengthened under the assumptions that the Cl? cotransporters Na?+?-K?+?-Cl?? and K?+?-Cl?? are located in different regions of the SAC dendritic tree (Gavrikov et al, PNAS 103(49):18793–18798, 2006) and that GABA evokes a long-lasting response (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799, 2006). A possible mechanism is discussed based on the generation of waves of local glutamate and GABA secretion, and their postsynaptic interplay as the waves travel between cell compartments.  相似文献   

14.
Sensory neurons in vertebrates are derived from two embryonic transient cell sources: neural crest (NC) and ectodermal placodes. The placodes are thickenings of ectodermal tissue that are responsible for the formation of cranial ganglia as well as complex sensory organs that include the lens, inner ear, and olfactory epithelium. The NC cells have been indicated to arise at the edges of the neural plate/dorsal neural tube, from both the neural plate and the epidermis in response to reciprocal interactions Moury and Jacobson (Dev Biol 141:243?C253, 1990). NC cells migrate throughout the organism and give rise to a multitude of cell types that include melanocytes, cartilage and connective tissue of the head, components of the cranial nerves, the dorsal root ganglia, and Schwann cells. The embryonic definition of these two transient populations and their relative contribution to the formation of sensory organs has been investigated and debated for several decades (Basch and Bronner-Fraser, Adv Exp Med Biol 589:24?C31, 2006; Basch et al., Nature 441:218?C222, 2006) review (Baker and Bronner-Fraser, Dev Biol 232:1?C61, 2001). Historically, all placodes have been described as exclusively derived from non-neural ectodermal progenitors. Recent genetic fate-mapping studies suggested a NC contribution to the olfactory placodes (OP) as well as the otic (auditory) placodes in rodents (Murdoch and Roskams, J Neurosci Off J Soc Neurosci 28:4271?C4282, 2008; Murdoch et al., J Neurosci 30:9523?C9532, 2010; Forni et al., J Neurosci Off J Soc Neurosci 31:6915?C6927, 2011b; Freyer et al., Development 138:5403?C5414, 2011; Katoh et al., Mol Brain 4:34, 2011). This review analyzes and discusses some recent developmental studies on the OP, placodal derivatives, and olfactory system.  相似文献   

15.
The development of new anti-neoplastic drugs is a key issue for cancer chemotherapy due to the reality that, most likely, certain cancer cells are resistant to current chemotherapy. The past two decades have witnessed tremendous advances in our understanding of the pathogenesis of cancer. These advances have allowed identification new targets as oncogenes, tumor supressor genes and the possible implication of the mitochondria (Fulda et al. Nat Rev Drug Discov 9:447–464, 2010). Annonaceous Acetogenins (ACGs) have been described as the most potent inhibitors of the respiratory chain because of their interaction with mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116–120, 1994; Zafra-Polo et al. Phytochemistry 42:253–271, 1996; Miyoshi et al. Biochim Biophys Acta 1365:443–452, 1998; Tormo et al. Arch Biochem Biophys 369:119–126, 1999; Motoyama et al. Bioorg Med Chem Lett 12:2089–2092, 2002). To explore a possible application of natural products from Annonaceous plants to cancer treatment, we have selected four bis-tetrahydrofuranic ACGs, three from Annona cherimolia (cherimolin-1, motrilin and laherradurin) and one from Rollinia mucosa (rollinianstatin-1) in order to fully describe their mechanisms responsible within the cell (Fig. 1). In this study, using a hepato-carcinoma cell line (HepG2) as a model, we showed that the bis-THF ACGs caused cell death through the induction of the apoptotic mitochondrial pathway. Their potency and behavior were compared with the classical mitochondrial respiratory chain Complex I inhibitor rotenone in every apoptotic pathway step.
Fig. 1
ACGs structures  相似文献   

16.
Growth-fragmentation equations arise in many different contexts, ranging from cell division, protein polymerization, neurosciences etc. Direct observation of temporal dynamics being often difficult, it is of main interest to develop theoretical and numerical methods to recover reaction rates and parameters of the equation from indirect observation of the solution. Following the work done in Perthame and Zubelli (Inverse Probl 23:1037–1052, 2007) and Doumic et al. (2009) for the specific case of the cell division equation, we address here the general question of recovering the fragmentation rate of the equation from the observation of the time-asymptotic solution, when the fragmentation kernel and the growth rates are fully general. We give both theoretical results and numerical methods, and discuss the remaining issues.  相似文献   

17.

Purpose

This article discusses the choice of stakeholder categories and the integration of stakeholders into participatory processes to define impact categories and select indicators.

Methods

We undertook a literature review concerning the roles and the importance of stakeholders in participatory processes, and the use of such processes in environmental and social LCAs (Biswas et al. Int J Life Cycle Assess 3(4):184-190, 1998; Sonnemann et al. Int J Life Cycle Assess 6(6):325-333, 2001; Baldo Int J Life Cycle Assess 7(5):269-275, 2002; James et al. Int J Life Cycle Assess 7(3):151-157, 2002; Bras-Kapwijk Int J Life Cycle Assess 8(5):266-272, 2003; Mettier et al. Int J Life Cycle Assess 11(6):468-476, 2006). As part of the French National Research Agency Piscenlit project, we adapted the Principle, Criteria, Indicator (PCI) method (Rey-Valette et al. 2008), which is an assessment method of sustainable development, as a way to integrate the participatory approach into Social Life Cycle Assessment (SLCA) methodology, mainly at the impact definition stage.

Results and discussion

Different views of participation were found in the literature; there is no consensual normative approach for the implication of stakeholders in LCA development. Some attempts have been made to integrate stakeholders into environmental LCAs but these attempts have not been generalized. However, they strongly emphasize the interrelationship between research on the growing integration of stakeholders and on the choice of stakeholders. We then propose criteria from stakeholder theory (Freeman 1984; Mitchell et al. Acad Manage Rev 22(4):853-886, 1997; Geibler et al. Bus Strat Environ 15:334-346, 2006) in order to identify relevant stakeholders for SLCA participatory approach. The adaptation of the PCI method to Principles, Impacts, and Indicators (PII) enables stakeholders to express themselves and hence leads to definitions of relevant social indicators that they can appropriate. The paper presents results regarding the selection of stakeholders but no specific results regarding the choice of impact categories and indicators.

Conclusions and recommendations

Integrating a participatory approach into SLCAs is of interest at several levels. It enables various factors to be taken into account: plurality of stakeholder interests, local knowledge, and impact categories that make sense for stakeholders in different contexts. It also promotes dialogue and simplifies the search for indicators. However, it requires a multidisciplinary approach and the integration of new knowledge and skills for the SLCA practitioners.  相似文献   

18.
Production of doubled haploids (DHs) is a convenient tool to obtain pure lines for breeding purposes. Until now, the easiest and most useful approach to obtain pepper DHs is via anther culture. However, this method has an associated possibility of producing calli from anther wall tissues that would be coexisting in the anther locule with embryos derived from microspores. Using two established protocols for anther culture, Dumas de Vaulx et al. (Agronomie 2:983–988, 1981) and Supena et al. (Sci Hort 107:226–232, 2006a; Plant Cell Rep 25:1–10, 2006b) callus and embryo development was assessed in four sweet pepper cultivars. For all genotypes tested, the protocol of Dumas de Vaulx et al. (Agronomie 2:983–988, 1981) promoted both embryo development and callus growth, whereas the protocol of Supena et al. (Sci Hort 107:226–232, 2006a; Plant Cell Rep 25:1–10, 2006b) produced no callus but only embryos. However, differences in embryo production were observed among these genotypes. In parallel, anthers were exposed to a 35 °C inductive heat shock for 4, 8, 12 and 16 days, prior to culture at 25 °C. The duration of the heat shock had significant effects in embryo production, but also in callus generation. Callus generation increased with prolonged exposures to 35 °C. Embryo and callus origin was analyzed by flow cytometry, light microscopy and molecular markers. Tests conducted demonstrated a gametophytic origin for all of the embryos tested, and a sporophytic origin for all of the calli. Together, our results reveal that culture conditions have a significant influence on the presence of calli derived from anther walls, which could be minimized by reducing heat shock exposure and/or using a shed-microspore approach.  相似文献   

19.
Joseph G. Meert 《Evolution》2012,5(4):547-554
During the voyage of the H.M.S. Beagle, Charles Darwin quickly realized that geographic isolation led to significant changes in the adaptation of local flora and fauna (Darwin 1859). Genetic isolation is one of the well-known mechanisms by which adaptation (allopatric speciation) can occur (Palumbi, Annu Rev Ecol Syst 25:547?C72, 1994; Ricklefs, J Avian Biol 33:207?C11, 2002; Burns et al., Evolution 56:1240?C52, 2002; Hendry et al., Science 290:516?C8, 2009). Evolutionary changes can also occur when landmasses converge or are ??bridged.?? An important and relatively recent (Pliocene Epoch) example known as the ??Great American Biotic Interchange?? allowed for the migration of previously isolated species into new ecological niches between North and South America (Webb 1985, Ann Mo Bot Gard 93:245?C57, 2006; Kirby and MacFadden, Palaeogeogr Palaeoclimatol Palaeoecol 228:193?C202, 2005). Geographic isolation (vicariance) or geographic merging (geodispersal) can occur for a variety of reasons (sea level rise, splitting of continents, mountain building). In addition, the growth of a large supercontinent (or breakup) may change the climatic zonation on the globe and form a different type of barrier for species migration. This short review paper focuses on changing paleogeography throughout the Phanerozoic and the close ties between paleogeography and the evolutionary history of life on Earth.  相似文献   

20.
MYH9 has been proposed as a major genetic risk locus for a spectrum of nondiabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African-specific missense mutations (S342G and I384M) in the neighboring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. The APOL1 gene product, apolipoprotein L-1, has been studied for its roles in trypanosomal lysis, autophagic cell death, lipid metabolism, as well as vascular and other biological activities. We also show that the distribution of these newly identified APOL1 risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to MYH9. Mapping by admixture linkage disequilibrium (MALD) localized an interval on chromosome 22, in a region that includes the MYH9 gene, which was shown to contain African ancestry risk variants associated with certain forms of ESKD (Kao et al. 2008; Kopp et al. 2008). MYH9 encodes nonmuscle myosin heavy chain IIa, a major cytoskeletal nanomotor protein expressed in many cell types, including podocyte cells of the renal glomerulus. Moreover, 39 different coding region mutations in MYH9 have been identified in patients with a group of rare syndromes, collectively termed the Giant Platelet Syndromes, with clear autosomal dominant inheritance, and various clinical manifestations, sometimes also including glomerular pathology and chronic kidney disease (Kopp 2010; Sekine et al. 2010). Accordingly, MYH9 was further explored in these studies as the leading candidate gene responsible for the MALD signal. Dense mapping of MYH9 identified individual single nucleotide polymorphisms (SNPs) and sets of such SNPs grouped as haplotypes that were found to be highly associated with a large and important group of ESKD risk phenotypes, which as a consequence were designated as MYH9-associated nephropathies (Bostrom and Freedman 2010). These included HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies (Bostrom and Freedman 2010). The MYH9 SNP and haplotype associations observed with these forms of ESKD yielded the largest odds ratios (OR) reported to date for the association of common variants with common disease risk (Winkler et al. 2010). Two specific MYH9 variants (rs5750250 of S-haplotype and rs11912763 of F-haplotype) were designated as most strongly predictive on the basis of Receiver Operating Characteristic analysis (Nelson et al. 2010). These MYH9 association studies were then also extended to earlier stage and related kidney disease phenotypes and to population groups with varying degrees of recent African ancestry admixture (Behar et al. 2010; Freedman et al. 2009a, b; Nelson et al. 2010), and led to the expectation of finding a functional African ancestry causative variant within MYH9. However, despite intensive efforts including re-sequencing of the MYH9 gene no suggested functional mutation has been identified (Nelson et al. 2010; Winkler et al. 2010). This led us to re-examine the interval surrounding MYH9 and to the detection of novel missense mutations with predicted functional effects in the neighboring APOL1 gene, which are significantly more associated with ESKD than all previously reported SNPs in MYH9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号