首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth factor deprivation-induced apoptosis plays an important role in several cellular systems. However, knowledge of the molecular mechanisms involved are restricted to a few murine models or tumor cell lines. Therefore, we aimed studying signaling pathways leading to apoptosis in activated human peripheral T cells after IL-2 withdrawal. Lymphoblasts from patients with CD 95 (Fas/APO-1)-deficiency revealed that functional CD95 was not required to induce apoptosis after IL-2 withdrawal. Moreover, apoptosis induction in response to various cytotoxic stimuli was found to be mediated in the absence of functional CD95 but was affirmatorily influenced by IL-2 signaling. Immunoblots showed no downregulation of Bcl-2 or Bcl-xL and no upregulation of Bax, whereas decreased mitochondrial membrane potential was readily measurable 24 h after cytokine deprivation. Tetrapeptide inhibitors showed limited efficacy in preventing apoptosis whereas the caspase inhibitor zVAD-FMK potently blocked induction of apoptosis. Cleavage of different fluorogenic substrates revealed multiple caspase enzyme activities in lymphoblasts, which were not negatively affected by the fas mutation. Starting at 8 h after IL-2 withdrawal, upregulation of active caspase-3 but not of caspase-8 could be detected. Taken together, our data argue for molecular mechanisms of cytokine deprivation-induced apoptosis in activated human lymphocytes independent of CD95.  相似文献   

2.
X-linked inhibitor of apoptosis protein (XIAP) is a potent modulator of programmed cell death. XIAP specifically binds and inhibits the function of caspase-3, -7, and -9, key effector proteases of apoptosis. We recently isolated, by yeast two-hybrid screening, a novel 34-kDa zinc finger protein, XIAP-associated factor 1 (XAF1). Both the caspase inhibiting and the anti-apoptotic abilities of XIAP were found to be blocked by overexpressed XAF1. Here, we report the isolation and characterization of the human XAF1 gene. The xaf1 gene consists of seven exons spanning 18 kb. Fluorescence in situ hybridization analysis localized the xaf1 locus at 17p13.2, telomeric to the p53 gene. The xaf1 locus was further refined to YAC 746C10, approximately 3 cM distal to TP53. Microsatellite analysis of the xaf1 locus using the NCI 60 cell line panel revealed significantly decreased heterozygosity at all three polymorphic markers tested, suggesting that allelic loss of the xaf1 gene is prevalent in cancer cell lines. Examination of the same NCI cell line panel for xaf1 RNA expression demonstrated that cancer cell lines exhibited very low levels of mRNA relative to normal human liver. In contrast, XIAP mRNA levels were relatively high in the majority of cancer cell lines tested. We propose that a high level of XIAP to XAF1 expression in cancer cells may provide a survival advantage through the relative increase of XIAP anti-apoptotic function.  相似文献   

3.
4.
Previous suggestions of CpG-specific apoptotic commitment implied critical epigenetic modulation of house-keeping genes which have canonical CpG islands at 5 promoter regions. Differential housekeeping gene activity however has not been shown. Using a focussed microarray (genechip) of 22 housekeeping genes we show this in apoptosis induced in human Chang liver cells by DCNP (2,6-dichloro-4-nitrophenol), a non-genotoxic inhibitor of sulfate detoxification. 3–7 folds downregulation of 9 genes in glycolysis, tricarboxylic acid cycle and the respiratory electron transport chain suggested gene-directed energy depletion which was correlated with observed ATP depletion. 4 folds downregulation of the pyruvate dehydrogenease gene suggested gene-directed metabolic acidosis which was correlated with observed cell acidification. Other differential housekeeping gene activity, including 4 folds upregulation of microtubular alpha-tubulin gene, and 2 folds upregulation of ubiquitin, also had a bearing on apoptosis. Broadspectrum zVAD-fmk caspase inhibition abolished 200 bp DNA ladder fragmentations but not the CpG-specific megabase fragmentations and other hallmarks of cell destruction, suggesting a caspase-independent cell death. Death appeared committed at gene-level.  相似文献   

5.
Ke H  Pei J  Ni Z  Xia H  Qi H  Woods T  Kelekar A  Tao W 《Experimental cell research》2004,298(2):329-338
Lats2, also known as Kpm, is the second mammalian member of the novel Lats tumor suppressor gene family. Recent studies have demonstrated that Lats2 negatively regulates the cell cycle by controlling G1/S and/or G2/M transition. To further understand the role of Lats2 in the control of human cancer development, we have expressed the protein in human lung cancer cells by transduction of a replication-deficient adenovirus expressing human Lats2 (Ad-Lats2). Using a variety of techniques, including Annexin V uptake, cleavage of PARP, and DNA laddering, we have demonstrated that the ectopic expression of human Lats2 induced apoptosis in two lung cancer cell lines, A549 and H1299. Caspases-3, 7, 8, and 9 were processed in the Ad-Lats2-transduced cells; however, it was active caspase-9, not caspase-8, that initiated the caspase cascade. Inhibitors specific to caspase-3 and 9 delayed the onset of Lats2-mediated apoptosis. Western blot analysis revealed that anti-apoptotic proteins, BCL-2 and BCL-x(L), but not the pro-apoptotic protein, BAX, were downregulated in Ad-Lats2-transduced human lung cancer cells. Overexpression of either Bcl-2 or Bcl-x(L) in these cells lead to the suppression of Lats2-mediated caspase cleavage and apoptosis. These results show that Lats2 induces apoptosis through downregulating anti-apoptotic proteins, BCL-2 and BCL-x(L), in human lung cancer cells.  相似文献   

6.
The CED4/Apaf-1 family of proteins functions as critical regulators of apoptosis and NF-kappaB signaling pathways. A novel human member of this family, called CARD12, was identified that induces apoptosis when expressed in cells. CARD12 is most similar in structure to the CED4/Apaf-1 family member CARD4, and is comprised of an N-terminal caspase recruitment domain (CARD), a central nucleotide-binding site (NBS), and a C-terminal domain of leucine-rich repeats (LRR). The CARD domain of CARD12 interacts selectively with the CARD domain of ASC, a recently identified proapoptotic protein. In addition, CARD12 coprecipitates caspase-1, a caspase that participates in both apoptotic signaling and cytokine processing. CARD12 may assemble with proapoptotic CARD proteins to coordinate the activation of downstream apoptotic and inflammatory signaling pathways.  相似文献   

7.
8.
9.
Recent studies have revealed that Toll-like receptors (TLRs) are highly expressed and activated in many types of cancer. Physiologically, TLR2 recognizes bacteria and other microorganisms in the oral cavity; however, the role of TLR2 in oral squamous cell carcinoma (OSCC) is unclear. In this study, we demonstrated that TLR2 is highly expressed in OSCC in comparison with adjacent non-malignant tissue. TLR2 was also expressed in OSCC-derived cell lines, and its expression was activated by ligands derived from bacteria and mycoplasma. Furthermore, to elucidate the mechanism of OSCC progression via TLR2 signal transduction, we focused on microRNAs (miRNAs) that are induced by TLR2 activation. Interestingly, ligand activation of TLR2 induced the expression of miR-146a and we found that downregulation of caspase recruitment domain–containing protein 10 (CARD10) mRNA in OSCC-derived cell lines. Moreover, knockdown of CARD10 induced resistance to cisplatin-induced apoptosis in OSCC cells. These findings suggest that the activation of TLR2 by bacterial components can enhance the progression of OSCC and may be implicated in acquired resistance to cisplatin-induced apoptosis through regulation of the miR-146a pathway.  相似文献   

10.
Skeletal muscle atrophy occurs in different catabolic conditions and mostly accompanied with upregulation of Muscle ring finger 1 (MuRF1) gene which is one of the master regulatory genes in muscle atrophy. Taurine amino acid is widely distributed in different tissues and has anti-inflammatory and antioxidant effects. This study aimed to investigate the potential influence of taurine on muscle atrophy induced by reduced mechanical loading. Twenty-eight Albino mice were used, and divided equally into four groups: group I (control); group II (immobilization); group III (immobilization?+?taurine); and group IV (taurine). Quadriceps muscle sections were taken for histopathology, immunohistochemical analysis of caspase 3 expression, and qRT-PCR of MuRF1 gene. Our data revealed Zenker necrosis associated with axonal injury of the nerve trunk of the immobilized muscle together with increase of caspase 3 expression and upregulation of MuRF1 gene. While, taurine supplementation alleviated the muscular and neural tissues damage associated with disuse skeletal muscle atrophy through downregulation of MuRF1 gene and decrease of tissue caspase 3 expression. In conclusion, taurine may be helpful to counteract apoptosis and up-regulated MuRF1 gene expression related to muscle atrophy, which might be hopeful for a large number of patients.  相似文献   

11.
Previously, we showed that gene expression of the rheumatoid arthritis-related antigen RA-A47, which is identical to human heat shock protein (HSP)47, was downregulated in chondrocytes by inflammatory cytokines such as TNFalpha. Associated with this phenomenon, RA-A47 appeared on the cell surface concomitant with upregulation of metabolic factors related to cartilage destruction. The upregulation of the metabolic factors could be achieved by downregulation of RA-A47 expression with ra-a47-specific anti-sense oligonucleotide. Here, we show that the enhanced surface expression of RA-A47 on a chondrocytic cell line, HCS-2/8 was also a direct result of RA-A47 downregulation by ra-a47 anti-sense oligonucleotide, independent of the cytokine effects. Moreover, cell-surface expression of CD9, a beta1 integrin-associated transmembrane protein that is involved in cell adhesion and cell motility events, was enhanced in the ra-a47 anti-sense oligonucleotide-treated cells. The CD9 was colocalized with RA-A47 on the cell surface, where it may have affected integrin signaling. Furthermore, Annexin-V binding to the cell surface and the level of a number of apoptosis-related genes including caspase-9 were increased after ra-a47 anti-sense oligonucleotide treatment, suggesting that enhanced surface expression of RA-A47 and CD9 may be initiating apoptosis. Differential screening using a cDNA gene array showed induction of metallothionein-III and chemokine receptor CXCR4 and of factors of the Notch signaling pathway by the anti-sense treatment, but not by TNFalpha. Thus, here we show for the first time an alternative mechanism of inducing apoptosis by downregulating molecular chaperones, independent of the action of TNFalpha. The surface-exposed RA-A47 may induce autoantibodies and inflammatory reactions in autoimmune disease situations such as rheumatoid arthritis.  相似文献   

12.
13.
Caspase-associated recruitment domains (CARDs) are protein interaction domains that participate in activation or suppression of CARD-carrying members of the caspase family of apoptosis-inducing proteases. A novel CARD-containing protein was identified that is overexpressed in some types of cancer and that binds and suppresses activation of procaspase-9, which we term TUCAN (tumor-up-regulated CARD-containing antagonist of caspase nine). The CARD domain of TUCAN selectively binds itself and procaspase-9. TUCAN interferes with binding of Apaf1 to procaspase-9 and suppresses caspase activation induced by the Apaf1 activator, cytochrome c. Overexpression of TUCAN in cells by stable or transient transfection inhibits apoptosis and caspase activation induced by Apaf1/caspase-9-dependent stimuli, including Bax, VP16, and staurosporine, but not by Apaf1/caspase-9-independent stimuli, Fas and granzyme B. High levels of endogenous TUCAN protein were detected in several tumor cell lines and in colon cancer specimens, correlating with shorter patient survival. Thus, TUCAN represents a new member of the CARD family that selectively suppresses apoptosis induced via the mitochondrial pathway for caspase activation.  相似文献   

14.
The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display.  相似文献   

15.
RBM5 (RNA-binding motif protein 5/LUCA-15/H37) is encoded at the lung cancer tumor suppressor locus 3p21.3 and itself has several important characteristics of a tumor suppressor, including both potentiation of apoptosis and inhibition of the cell cycle. Here, we report the effects of both upregulation and downregulation of LUCA-15/RBM5 on gene expression monitored using cDNA microarrays. Many of the genes modulated by LUCA-15/RBM5 are involved in the control of apoptosis, the cell cycle, or both. These effects were confirmed for the most significant genes using real-time RT-PCR and/or Western blotting. In particular, LUCA-15/RBM5 increased the expression of Stat5b and BMP5 and decreased the expression of AIB1 (Amplified In Breast Cancer 1), proto-oncogene Pim-1, caspase antagonist BIRC3 (cIAP-2, MIHC), and CDK2 (cyclin-dependent kinase 2). These effects on multiple genes controlling both apoptosis and proliferation are in line with the functional effects of LUCA-15/RBM5 and indicate that it plays a central role in regulating cell fate consistent with its tumor suppressor activity.  相似文献   

16.
Chang WT  Pan CY  Rajanbabu V  Cheng CW  Chen JY 《Peptides》2011,32(2):342-352
The inhibitory function of tilapia hepcidin (TH)1-5, an antimicrobial peptide, was not examined in previous studies. In this study, we synthesized the TH1-5 peptide and tested TH1-5's antitumor activity against several tumor cell lines. We show that TH1-5 inhibited the proliferation of tumor cells and reduced colony formation in a soft agar assay. Scanning electron microscopy and transmission electron microscopy showed that TH1-5 altered the membrane structure similar to the function of a lytic peptide. Acridine orange/ethidium bromide staining, a wound-healing assay, and a flow cytometric analysis showed that TH1-5 induced necrosis with high-concentration treatment and induced apoptosis with low-concentration treatment. Inflammation is known to be closely associated with the development of cancer. TH1-5 showing anti-inflammatory effects in a previous publication induced us to evaluate the anti-inflammatory effects in cancer cell lines through the expressions of immune-related genes after being treated with the TH1-5 peptide. However, real-time qualitative RT-PCR indicated that TH1-5 treatment induced downregulation of the expressions of interleukin (IL)-6, IL-8, IL-12, IL-15, interferon-γ, CTSG, caspase-7, and Bcl-2, and upregulation of IL-2 and CAPN5 in HeLa cells, and upregulation of IL-8 and CTSG in HT1080 cells. These results suggest that TH1-5 possibly induces an inflammatory response in HeLa cells, but not in HT1080 cells. Overall, these results indicate that TH1-5 possesses the potential to be a novel peptide for cancer therapy.  相似文献   

17.
Histone deacetylase inhibitors (HDACi) have been discovered as potential drugs for cancer treatment. The effect of BL1521, a novel HDACi, on the cell cycle distribution and the induction of apoptosis was investigated in a panel of MYCN single copy and MYCN amplified neuroblastoma cell lines. BL1521 arrested neuroblastoma cells in the G1 phase and induced up to 30% apoptosis. Downregulation of CDK4, upregulation of p21(WAF1/CIP1) and an increase of hypophosphorylated retinoblastoma protein were observed, indicating a possible mechanism for the cell-cycle arrest. BL1521 also induced downregulation of p27, which may underlie the observed induction of apoptosis.  相似文献   

18.
The ability of cells to escape apoptosis is critical for carcinogenesis as well as resistance to radiation and chemotherapy. ARC (Apoptosis Repressor with CARD (caspase recruitment domain)) is an unusual inhibitor of apoptosis in that it antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. ARC is expressed predominantly in terminally differentiated cells such as cardiac and skeletal myocytes and neurons. Recently, however, the abundance of ARC was noted to be markedly increased in the epithelium of primary human breast cancers compared with benign breast tissue and to confer chemo- and radiation-resistance. Whether the induction of ARC is specific to breast cancer or a more general feature of neoplasia remains unknown. In this study, we assessed the abundance and subcellular localization of ARC in 21 human colon cancer cell lines and in 44 primary human colon adenocarcinomas and adjacent benign colonic tissue. ARC was present at high levels in most colon cancer cell lines and in almost all primary colon cancers compared with corresponding controls. Levels of ARC in the cytoplasm were increased in well, moderately, and poorly differentiated cancers compared with benign tissue, while levels of nuclear ARC were increased only in moderately differentiated tumors. Moreover, epithelial cancers of the ovary and cervix exhibited increased ARC abundance compared with controls. These results demonstrate that ARC is a novel marker of human colon cancer and suggest that it may be a feature of epithelial cancers.  相似文献   

19.
The inhibitor-of-apoptosis (IAP) proteins are a novel family of antiapoptotic proteins that are thought to inhibit cell death via direct inhibition of caspases. Here, we report that human malignant glioma cell lines express XIAP, HIAP-1 and HIAP-2 mRNA and proteins. NAIP was not expressed. IAP proteins were not cleaved during CD95 ligand (CD95L)-induced apoptosis, and loss of IAP protein expression was not responsible for the potentiation of CD95L-induced apoptosis when protein synthesis was inhibited. LN-18 cells are highly sensitive to CD95-mediated apoptosis, whereas LN-229 cells require co-exposure to CD95L and a protein synthesis inhibitor, CHX, to acquire sensitivity to apoptosis. Adenoviral XIAP gene transfer blocked caspase 8 and 3 processing in both cell lines in the absence of CHX. Apoptosis was blocked in the absence and in the presence of CHX. However, XIAP failed to block caspase 8 processing in LN-229 cells in the presence of CHX. There was considerable overlap of the effects of XIAP on caspase processing with those of BCL-2 and the viral caspase inhibitor crm-A. These data define complex regulatory mechanisms for CD95-mediated apoptosis in glioma cells and indicate that there may be a distinct pathway of death receptor-mediated apoptosis that is readily activated when protein synthesis is inhibited. The constitutive expression of natural caspase inhibitors may play a role in the resistance of these cells to apoptotic stimuli that directly target caspases, including radiochemotherapy and immune-mediated tumor cell lysis.  相似文献   

20.
Costunolide is a sesquiterpene lactone, which possesses potent anti‐cancer properties. However, there is little report about its effects on esophageal cancer. In our study, we investigated the effects of costunolide on the cell viability, cell cycle, and apoptosis in human esophageal cancer Eca‐109 cells. It was found that costunolide inhibited the growth of Eca‐109 cells in a dose‐dependent manner, which was associated with the loss of mitochondrial membrane potential (Δψm) and the production of ROS. Costunolide induced apoptosis of Eca‐109 cells as well as cell cycle arrest in G1/S phase by upregulation of P53 and P21. Costunolide triggered apoptosis in esophageal cancer cells via the upregulation of Bax, downregulation of Bcl‐2, and significant activation of caspase‐3 and poly ADP‐ribose polymerase. These effects were markedly abrogated when cells were pretreated with N‐acetylcysteine, a specific reactive oxygen specie inhibitor. These results suggest that costunolide is a potential candidate for the treatment of esophageal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号