首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Floyd SK  Zalewski CS  Bowman JL 《Genetics》2006,173(1):373-388
Land plants underwent tremendous evolutionary change following the divergence of the ancestral lineage from algal relatives. Several important developmental innovations appeared as the embryophyte clade diversified, leading to the appearance of new organs and tissue types. To understand how these changes came about, we need to identify the fundamental genetic developmental programs that are responsible for growth, patterning, and differentiation and describe how these programs were modified and elaborated through time to produce novel morphologies. Class III homeodomain-leucine zipper (class III HD-Zip) genes, identified in the model plant Arabidopsis thaliana, provide good candidates for basic land plant patterning genes. We show that these genes may have evolved in a common ancestor of land plants and their algal sister group and that the gene family has diversified as land plant lineages have diversified. Phylogenetic analysis, expression data from nonflowering lineages, and evidence from Arabidopsis and other flowering plants indicate that class III HD-Zip genes acquired new functions in sporophyte apical growth, vascular patterning and differentiation, and leaf development. Modification of expression patterns that accompanied diversification of class III HD-Zip genes likely played an important role in the evolution of land plant form.  相似文献   

2.
The Arabidopsis thaliana genome contains five class III homeodomain-leucine zipper genes. We have isolated loss-of-function alleles for each family member for use in genetic analysis. This gene family regulates apical embryo patterning, embryonic shoot meristem formation, organ polarity, vascular development, and meristem function. Genetic analyses revealed a complex pattern of overlapping functions, some of which are not readily inferred by phylogenetic relationships or by gene expression patterns. The PHABULOSA and PHAVOLUTA genes perform overlapping functions with REVOLUTA, whereas the PHABULOSA, PHAVOLUTA, and CORONA/ATHB15 genes perform overlapping functions distinct from REVOLUTA. Furthermore, ATHB8 and CORONA encode functions that are both antagonistic to those of REVOLUTA within certain tissues and overlapping with REVOLUTA in other tissues. Differences in expression patterns explain some of these genetic interactions, whereas other interactions are likely attributable to differences in protein function as indicated by cross-complementation studies.  相似文献   

3.
Organogenesis at the shoot meristem requires a delicate balance between stem cell specification and differentiation. In Arabidopsis thaliana, WUSCHEL (WUS) is a key factor promoting stem cell identity, whereas the CLAVATA (CLV1, CLV2, and CLV3) loci appear to promote differentiation by repressing WUS expression. In a screen for mutations modifying clv1 mutants, we have identified a novel regulator of meristem development we term CORONA (CNA). Whereas cna single mutant plants exhibit subtle defects in meristem development, clv cna double mutants develop massively enlarged apices that display early loss of organogenesis, misexpression of WUS and CLV3, and eventual differentiation of the entire apex. The CNA gene was isolated by positional cloning and found to encode a class III homeodomain Leu zipper protein. A missense mutation resulting in the dominant-negative cna-1 allele was identified in a conserved domain of unknown function, and a likely null allele was shown to display a similar but weaker phenotype. CNA is expressed in developing vascular tissue, diffusely through shoot and flower meristems, and within developing stamens and carpels. Our analysis of WUS expression in wild-type, clv, and clv cna plants revealed that, contrary to current models, WUS is neither necessary nor sufficient for stem cell specification and that neither WUS nor CLV3 is a marker for stem cell identity. We propose that CNA functions in parallel to the CLV loci to promote organ formation.  相似文献   

4.
5.
6.
7.
8.
9.
Itoh J  Hibara K  Sato Y  Nagato Y 《Plant physiology》2008,147(4):1960-1975
Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner.  相似文献   

10.
11.
12.
13.
Homeobox genes are essential regulators of the development of plants as well as other organisms. We chose eight putative Arabidopsis homeobox genes not previously characterized and examined their expression in response to treatment with auxin/cytokinin. One of them, ATHB53, was further studied because it was auxin-inducible and its induction was inhibited by cytokinin. Its full-length cDNA was cloned and found to encode a protein of the HD-Zip superfamily. Whole-mount in situ hybridization and RT-PCR showed that it was expressed in the root meristem, and auxin treatment increased its expression, especially in a region from 0.3 to 0.6mm from the root tip. These results suggest that ATHB53 plays a regulatory role in auxin/cytokinin signaling during root development.  相似文献   

14.
15.
16.
The possible involvement of calcium in the regulation of ammonium-promoted senescence of detached rice leaves was investigated. Calcium effectively reduced ammonium-promoted senescence of detached rice leaves. The effect of ammonium on the senescence was also significantly reduced by the calcium ionophore A23187. Ammonium-promoted senescence of detached rice leaves may be mediated through blocking the entrance of calcium ions into the cytosol.  相似文献   

17.
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.  相似文献   

18.
Inflammation occurs in adipose tissue in obesity. We have examined whether IL-33, a recently identified IL-1 gene family member, and its associated receptors are expressed in human adipocytes. IL-33, IL-1RL1 and IL-1RAP gene expression was observed in human visceral white fat, in preadipocytes and in adipocytes (SGBS cells). Treatment with TNFα for 24 h induced a 6-fold increase in IL-33 mRNA level in preadipocytes and adipocytes. Time-course studies with adipocytes showed that the increase in IL-33 mRNA with TNFα was maximal (>55-fold) at 12 h. This response was markedly different to IL-1β (peak mRNA increase at 2 h; 5.4-fold) and 1L-18 (peak mRNA increase at 6 h; >1500-fold). Exposure of adipocytes to hypoxia (1% O2, 24 h) did not alter IL-33 mRNA level; in preadipocytes, however, there was a 3-fold increase. Human adipocytes and preadipocytes express IL-33, but the various IL-1 family members exhibit major differences in responsiveness to TNFα.  相似文献   

19.
20.
Chou CM  Kao CH 《Plant physiology》1992,99(4):1693-1694
The possible involvement of calcium in the regulation of methyl jasmonate-promoted senescence of detached rice (Oryza sativa) leaves was investigated. Calcium effectively reduced methyl jasmonate-promoted senescence of detached rice leaves. The effect of methyl jasmonate on the senescence was also significantly reduced by calcium ionophore A23187. Methyl jasmonate-promoted senescence of detached rice leaves may be mediated through blocking the entrance of calcium ions into the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号