首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation showed that positive and negative air ions have opposite general effects on the structure of sleep in rats. When submitted to positive air ions, the animals consecutively exhibited during sleep an EEG with increased amplitude and lowered frequency. This decrease in vigilance level is nevertheless accompanied by obvious signs of a disturbed sleep, that is: more polyphasic sleep and decrease of slow wave sleep which is the most efficient for physical restoration. The generally opposite action of negative air ions is consistent with their effects described by other authors who have studied human sleep after aeroionotherapy. The general paradigm of air ion action on sleep is in agreement with implications of recent sleep theories.  相似文献   

2.
In earlier studies it has been shown that stimulation of the median raphe nucleus (MR) in awake rabbits decreases the expression and frequency of oscillatory theta activity in the septohippocampal system, and the functional blockade of this nucleus evokes the regular and high-frequency theta rhythm. The present work was aimed at elucidation of serotoninergic influence of MR (which also contains cells of other chemical nature) to the septohippocampal system of theta activity. Serotonin reuptake blocker fluoxetine that increases brain serotonin level was applied. Hippocampal electroencephalogram was recorded in awake rabbits. Bilateral intracerebroventricular infusion of fluoxetine hydrochloride (Sigma, St. Louis; 15 micrograms in 5 microliters saline) in all cases reduced the rhythmic theta activity. In 15 of 18 (83.3%) of experiments the decrease in hippocampal theta oscillations was more than 50% of the control level. The theta band of the spectral density histogram decreased in the mean by 56 +/- 5.8% of the control level (from 10 to 93% in different experiments, p < 0.001). The mean latency of these changes was 3.5 +/- 0.11 minutes (2.9-4.1 min), the effect duration was 64 +/- 3.2 min (45.3-90 min). The mean frequency of the theta waves did not change as compared to the baseline and was equal to 5.25 +/- 0.5 Hz (4.5-6.5 Hz). The fluoxetine-induced reduction of the theta rhythm expression in hippocampus is the evidence of its inhibitory control by serotoninergic brain system. It is suggested that the increase of the frequency of hippocampal theta rhythm after the functional blockade of MR observed in our earlier experiments was the result of a release of the septohippocampal system from the influence of nonserotoninergic neurons (via glutamatergic reticular formation) and/or temporary cessation of the MR interaction with noradrenergic, dopaminergic and glutamate/aspartate systems.  相似文献   

3.
Centre of Theoretical and Computational Neuroscience, University of Plymouth, UK Basing on the hypothesis about the mechanisms of the theta rhythm generation, the article presents mathematical and computational models of theta activity in the hippocampus. The problem of the theta rhythm modeling is nontrivial because the slow theta oscillations (about 5 Hz) should be generated by a neural system composed of frequently firing neural populations. We studied a model of neural pacemakers in the septum. In this model, the pacemaker follows the frequency of the external signal if this frequency does not deviate too far from the natural frequency of the pacemaker, otherwise the pacemaker returns to the frequency of its own oscillations. These results are in agreement with the experimental records of medial septum neurons. Our model of the septal pacemaker of the theta rhythm is based on the hypothesis that the hippocampal theta appears as a result of the influence of the assemblies of neurons in the medial septum which are under control of pacemaker neurons. Though the model of the pacemaker satisfies many experimental facts, the synchronization of activity in different neural assemblies of the model is not as strong as it should be. Another model of the theta generation is based on the anatomical data about the existence of the inhibitory GABAergic loop between the medial septum and the hippocampus. This model shows stable oscillations at the frequency of the theta rhythm in a broad range of parameter values. It also provides explanation to the experimental data about the variation of the frequency and the amplitude of the theta rhythm under different external stimulations of the system. The role of the theta rhythm for information processing in the hippocampus is discussed.  相似文献   

4.
The effects of septal lesion and entorhinal cortex section on hippocampal electrical activity during the cat sleep-wake cycle were investigated in chronic experiments. The medial portion of the septum only was found to participate in generation of this activity. Complete suppression of hippocampal theta rhythm during active wakefulness and paradoxical sleep were the main effects of septal lesion. In slow-wave sleep, the effects of septal lesion manifested in a slight attenuation of the intensity of the dominant frequency (of 1 Hz). Widespread septal lesion does not add to the changes occurring when the medial portion of the septum is so isolated. Section of the entorhinal cortex produces a sharp increase in hippocampal theta rhythm during waking and paradoxical sleep. Clearcut attenuation of delta and subdelta rhythm intensities were observed in slowwave sleep. It is postulated that under normal conditions hippocampal entorhinal input exerts a modulating effect on the genesis of hippocampal theta rhythm.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 622–630, September–October, 1987.  相似文献   

5.
Neocortical and hippocampal EEG activity was recorded in 23 rats subjected to the bilateral electrolytic lesions of the diencephalic zona incerta (ZI). The aim was to find whether damage to ZI can replicate insomnia and disturbances in cortical EEG desynchronization and hippocampal theta rhythm found after lesions of the lateral hypothalamic (LH) area. No effect of the ZI lesions on waking-sleep cycle was found. The amplitude and frequency of cortical waves and hippocampal theta rhythm during waking were changed only in some rats. These changes were small, short-lasting and bidirectional (toward and increase or decrease in different subjects). Both the amplitude and frequency of paradoxical sleep theta were depressed in part of animals. Thus the marked EEG changes after LH lesions can not be attributed to simultaneous damage of the adjacent subthalamic region. However, the ZI seems to constitute a part of a larger system regulating cortical arousal and hippocampal theta rhythm.  相似文献   

6.
It has been shown that the EEG of pregnant women with high anxiety level is characterized by a lower occipital alpha and theta rhythm spectral power if compared to the EEG of women with low anxiety level. The frequency of the alpha rhythm of their EEG was reliably higher. Pregnant women with high anxiety level with a pregnancy interruption threat diagnosis have an essentially lower occipital alpha rhythm spectral power than women of this group without such a diagnosis. And vice versa, the occipital alpha rhythm spectral power in the EEG of pregnant women with low anxiety level with a pregnancy interruption threat diagnosis is essentially higher and its frequency essentially lower than the EEG of women without that diagnosis. The data received are interpreted as a change in hormone regulation during the pregnancy period, as well as psychogenic influence on the pregnancy.  相似文献   

7.
In rats, the basic licking rhythm is generated by the central pattern generator located in the brainstem. Nevertheless, the licking frequency can be regulated between about 7.5 and 4 Hz by changing the drinking conditions. If these conditions are kept constant, the licking frequency can be influenced only to a minor degree by factors such as deprivation level, type of solution, and phase of the session. The aim of our study was to compare the licking frequency of rats at different levels of vigilance. We investigated spontaneous licking of rats by an electrical lick sensor; parallel behavior monitoring was also performed. Animals kept in a stable environment and showing a lower level of vigilance licked at a rate of 5.96 Hz, fully vigilant rats licked significantly more rapidly at a frequency 6.57 Hz. The fastest rate of licking (6.49 Hz and 6.82 Hz, respectively) was encountered in alert rats under a mild stress caused by the presence of a second animal in the experimental box. The vigilance level is thus another factor affecting the licking rate of rats that should be taken into account in behavioral licking experiments.  相似文献   

8.
Reliability of the existing functional criteria for differentiation of pyramidal ("complex spike neurones") and inhibitory ("theta neurones") cells in the hippocampus of waking rabbit is evaluated on the basis of statistical analysis of neuronal spontaneous and evoked activity. The analysis shows, that the criteria of mean frequency, presence of theta modulation, neuronal behaviour in situations provoking EEG theta rhythm (e.g., excitation or inhibition during presentation of sensory stimuli), effects of medial septum and intrahippocampal stimulation do not permit reliable identification of the hippocampal neuronal types in the waking rabbit. The data on functional classification of the hippocampal neurones are discussed in connection with existing suggestions about their state in situations inducing theta rhythm generation.  相似文献   

9.
蛙类在暗视条件下能辨别不同颜色,但颜色感知时大脑神经活动的动态神经机制尚不清楚.本文通过分析峨眉仙琴蛙(Nidirana daunchina)在蓝、绿、黄三种颜色光刺激下脑电信号δ、θ、a、β 4种节律的功率谱,研究脑电节律与颜色感知之间的关系,探索颜色感知的动态神经机制.首先采集不同颜色刺激下端脑、间脑和中脑的脑电信...  相似文献   

10.
A distinct theta rhythm of EEG in the frontal midline area during performance of mental tasks has been called Fm theta. One of the characteristics of Fm theta is individual differences in its appearance. The effects of various mental tasks and its repetition on appearance of Fm theta were investigated. Adding, correcting wrong words, short-term memory (STM) and counting cubes were imposed 6 times on 7 male students who didn't generate Fm theta at the previous experiment. Counting cubes evoked more Fm theta than the other three mental tasks. In every task the first trial showed little Fm theta, and the appearance time of Fm theta was enhanced by repetition. Type I of Spielberger's State-Trait Anxiety Inventory (STAI-I) demonstrated a higher state anxiety level of the subjects at the first trial. It may be concluded that the amount of Fm theta corresponds to the level in concentration of attention.  相似文献   

11.
We investigated successive firing of the stellate cells within a theta cycle, which replicates the phase coding of place information, using a network model of the entorhinal cortex layer II with loop connections. Layer II of the entorhinal cortex (ECII) sends signals to the hippocampus, and the hippocampus sends signals back to layer V of the entorhinal cortex (ECV). In addition to this major pathway, projection from ECV to ECII also exists. It is, therefore, inferred that reverberation activity readily appears if projections from ECV to ECII are potentiated. The frequency of the reverberation would be in a gamma range because it takes signals 20–30 ms to go around the entorhinal-hippocampal loop circuits. On the other hand, it has been suggested that ECII is a theta rhythm generator. If the reverberation activity appears in the entorhinal-hippocampal loop circuits, gamma oscillation would be superimposed on a theta rhythm in ECII like a gamma-theta oscillation. This is a reminiscence of the theta phase coding of place information. In this paper, first, a network model of ECII will be developed in order to reproduce a theta rhythm. Secondly, we will show that loop connections from one stellate cell to the other one are selectively potentiated by afferent signals to ECII. Frequencies of those afferent signals are different, and transmission delay of the loop connections is 20 ms. As a result, stellate cells fire successively within one cycle of the theta rhythm. This resembles gamma-theta oscillation underlying the phase coding. Our model also replicates the phase precession of stellate cell firing within a cycle of subthreshold oscillation (theta rhythm).  相似文献   

12.
Ledberg A  Robbe D 《PloS one》2011,6(11):e27575
The hippocampal theta rhythm is required for accurate navigation and spatial memory but its relation to the dynamics of locomotion is poorly understood. We used miniature accelerometers to quantify with high temporal and spatial resolution the oscillatory movements associated with running in rats. Simultaneously, we recorded local field potentials in the CA1 area of the hippocampus. We report that when rats run their heads display prominent vertical oscillations with frequencies in the same range as the hippocampal theta rhythm (i.e., 6-12 Hz). In our behavioral set-up, rats run mainly with speeds between 50 and 100 cm/s. In this range of speeds, both the amplitude and frequency of the "theta" head oscillations were increasing functions of running speed, demonstrating that the head oscillations are part of the locomotion dynamics. We found evidence that these rhythmical locomotor dynamics interact with the neuronal activity in the hippocampus. The amplitude of the hippocampal theta rhythm depended on the relative phase shift with the head oscillations, being maximal when the two signals were in phase. Despite similarity in frequency, the head movements and LFP oscillations only displayed weak phase and frequency locking. Our results are consistent with that neurons in the CA1 region receive inputs that are phase locked to the head acceleration signal and that these inputs are integrated with the ongoing theta rhythm.  相似文献   

13.
In three dogs the dynamics was studied of changes in the number of instrumental motor reactions, the heart rate and the hippocampus theta rhythm was studied at the change of constant reinforcement to various regimes of probable reinforcement of alimentary conditioned stimulus. At 70 and 50% levels of the reinforcement the instrumental reflex appeared in response to all presentations of the signal stimulus. The greatest decrease in the number of reactions took place at 5% probability. The heart rate both in the intersignal period and at getting of empty feeder depended on the used probability of reinforcement and individual characteristics of animals. The frequency of the theta rhythm in all dogs was the highest at the 30% level and the lowest values were found at the 5% level of reinforcement. The obtained facts testify once more to complex genesis of emotional excitation, the value of which depends both on informational (uncertainty) and motivational (significance of reinforcement) factors.  相似文献   

14.
Alterations in oscillatory brain activity are strongly correlated with cognitive performance in various physiological rhythms. The present study investigated whether the directionality of neural information flow (NIF) could be used to characterize the synaptic plasticity in thalamocortical (TC) pathway, and examined which frequency field oscillations were mostly related to the cognitive deficiency in depression. Two novel algorithms were employed to determine the coupling interaction between the LD thalamus and medial prefrontal cortex (mPFC) in five frequency bands, using the phase signals of local field potentials (LFP) in these two regions. The results showed that the power of neural activity in mPFC was increased in delta, theta and beta frequency bands in depression. However, the nonlinear characteristics of LFP activity were weakened in depression by means of sample entropy measurements. In the analysis of phase dynamics, the phase synchronization values were reduced in theta rhythm in stressed rats. Importantly, the coupling direction index d and the unidirectional influence from LD thalamus to mPFC were significantly reduced at the theta rhythm in rats in depression, and increased after memantine treatment, which were associated with the LTP alterations and cognitive impairment in our previous report. Moreover, the fact that the reduced entropy value was only found in mPFC might implicate postsynaptic effect involved in synaptic plasticity alteration in the depression model. The results suggest that the effects of depression on cognitive deficits are mediated via profound alterations in information flow in the TC pathway, and the directional index at theta rhythm could be used as a measurement of synaptic plasticity.  相似文献   

15.
Administration of TRH into the lateral ventricle of unanesthetized rats produced increases in the incidence of hippocampal theta (5.9–9.1 Hz) rhythm, locomotor activity and shaking behavior. The increase in theta rhythm produced by TRH was brief (<5 min) and was coincident with a brief, large increase in locomotor activity. Intracerebroventricular injection of either TRH or D-Ala2-metenkephalinamide (D-Ala2-ME) also induced episodes of shaking behavior. Shakes induced by D-Ala2-ME were associated with the occurrence of hippocampal epileptiform activity whereas those caused by TRH occurred in the absence of any recorded abnormalities in hippocampal activity. These results suggest that the increase in hippocampal theta rhythm after TRH is secondary to the increase in locomotor activity and, that in contrast to enkephalins, shaking behavior caused by TRH may not be related to an action on the electrographic activity of the hippocampus.  相似文献   

16.
The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning.  相似文献   

17.
The effect of intracerebroventricular administration of Substance P fragment and met-enkephalin on the excitability of two generators of hippocampal theta rhythm was investigated in the experiments performed on chronic rabbits. Substance P had a strong facilitatory effect on the threshold of the generator of the hippocampal theta rhythm of the frequency 4-7 c/s and an inhibitory effect on the threshold of the generator of the 7-12 c/s frequency evoked by stimulation of the midbrain reticular formation. These effects were dose dependent. The effects of met-enkephalin were opposite. They increased the threshold of the 4-7 c/s hippocampal generator and decreased the threshold of the other generator. The effect of these two compounds was evaluated according to the energy of electrical trains of pulses maintaining the continuous arousal pattern in the hippocampus.  相似文献   

18.
The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.  相似文献   

19.
We estimated the efficacy of using the technique of feedback (FB) by EEG characteristics (EEG-FB, neurotherapy) with the aim of reducing increased anxiety levels in healthy 10- to 14-year-old children. The anxiety level was estimated using the Prikhojan anxiety test, the Spielberger–Khanin questionnaire, and the House–Tree–Person projective drawing technique. Positive effects of series of neurotherapy sessions were obvious. After training was completed, we observed significant increases in the ratios of the amplitudes of alpha and theta rhythms, semsorimotor and theta rhythms, as well as of the modal frequency of the EEG alpha rhythm in tested persons of the experimental group (n = 7). In the control group (n = 10), changes in these values did not reach the significance level. In the experimental group of tested persons subjected to EEG-FB sessions, the anxiety level decreased appreciably; in addition, the indices “feeling of inferiority” and “frustration” decreased significantly. In the control group, alterations of these psychological indices were not unidirectional. Therefore, modifications of the EEG pattern, which occurred in the course of training and were accompanied by a decrease in the anxiety level in the experimental group, can be indicative of the expediency of EEG-FB for the reduction of high anxiety levels in children and teenagers.  相似文献   

20.
Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4–12 Hz) and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号