首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence.  相似文献   

2.
Members of the transketolase group of thiamine-diphosphate-dependent enzymes from 17 different organisms including mammals, yeast, bacteria, and plants have been used for phylogenetic reconstruction. Alignment of the amino acid and DNA sequences for 21 transketolase enzymes and one putative transketolase reveals a number of highly conserved regions and invariant residues that are of predicted importance for enzyme activity, based on the crystal structure of yeast transketolase. One particular sequence of 36 residues has some similarities to the nucleotide-binding motif and we designate it as the transketolase motif. We report further evidence that the recP protein from Streptococcus pneumoniae might be a transketolase and we list a number of invariant residues which might be involved in substrate binding. Phylogenies derived from the nucleotide and the amino acid sequences by various methods show a conventional clustering for mammalian, plant, and gram-negative bacterial transketolases. The branching order of the gram-positive bacteria could not be inferred reliably. The formaldehyde transketolase (sometimes known as dihydroxyacetone synthase) of the yeast Hansenula polymorpha appears to be orthologous to the mammalian enzymes but paralogous to the other yeast transketolases. The occurrence of more than one transketolase gene in some organisms is consistent with several gene duplications. The high degree of similarity in functionally important residues and the fact that the same kinetic mechanism is applicable to all characterized transketolase enzymes is consistent with the proposition that they are all derived from one common ancestral gene. Transketolase appears to be an ancient enzyme that has evolved slowly and might serve as a model for a molecular clock, at least within the mammalian clade. Received: 13 September 1995 / Accepted: 14 November 1996  相似文献   

3.
4.
5.
The structural S-layer proteins of 28 different Corynebacterium glutamicum isolates have been analyzed systematically. Treatment of whole C. glutamicum cells with detergents resulted in the isolation of S-layer proteins with different apparent molecular masses, ranging in size from 55 to 66 kDa. The S-layer genes analyzed were characterized by coding regions ranging from 1,473 to 1,533 nucleotides coding for S-layer proteins with a size of 490-510 amino acids. Using PCR techniques, the corresponding S-layer genes of the 28 C. glutamicum isolates were all cloned and sequenced. The deduced amino acid sequences of the S-layer proteins showed identities between 69 and 98% and could be grouped into five phylogenetic classes. Furthermore, sequence analyses indicated that the S-layer proteins of the analyzed C. glutamicum isolates exhibit a mosaic structure of highly conserved and highly variable regions. Several conserved regions were assumed to play a key role in the formation of the C. glutamicum S-layers. Especially the N-terminal signal peptides and the C-terminal anchor sequences of the S-layer proteins showed a nearly perfect amino acid sequence conservation. Analyses by atomic force microscopy revealed a committed hexagonal structure. Morphological diversity of the C. glutamicum S-layers was observed in a class-specific unit cell dimension (ranging from 15.2 to 17.4 nm), which correlates with the sequence similarity-based classification. It could be demonstrated that differences in the primary structure of the S-layer proteins were reflected by the S-layer morphology.  相似文献   

6.
7.
8.
Until recently it was assumed that the transketolase-like protein (TKTL1) detected in the tumor tissue, is catalytically active mutant form of human transketolase (hTKT). Human TKT shares 61% sequence identity with TKTL1. And the two proteins are 77% homologous at the amino acid level. The major difference is the absence of 38 amino acid residues in the N-terminal region of TKTL1. Site-specific mutagenesis was used for modifying hTKT gene; the resulting construct had a 114-bp deletion corresponding to a deletion of 38 amino acid residues in hTKT protein. Wild type hTKT and mutant variant (DhTKT) were expressed in Escherichia coli and isolated using Ni-agarose affinity chromatography. We have demonstrated here that DhTKT is devoid of transketolase activity and lacks bound thiamine diphosphate (ThDP). In view of these results, it is unlikely that TKTL1 may be a ThDP-dependent protein capable of catalyzing the transketolase reaction, as hypothesized previously.  相似文献   

9.
As a first step in determining the importance of the anaplerotic function of phosphoenolpyruvate carboxylase (PEPC) in amino acid biosynthesis, the ppc gene coding for PEPC of Corynebacterium glutamicum ATCC13032 has been cloned by complementation of an Escherichia coli ppc mutant strain. PEPC activity encoded by the cloned gene is not affected by acetyl-CoA under conditions where the E. coli enzyme is strongly activated, whereas acetyl-CoA is able to relieve inhibition by L-aspartate used singly or in combination with alpha-ketoglutarate. Amplification of the ppc gene in a C. glutamicum lysine-excreting strain resulted in increased PEPC-specific activity and lysine productivity. The nucleotide sequence of a DNA fragment of 4885 bp encompassing the ppc gene has been determined. At the amino acid level, PEPC from C. glutamicum presents overall a high degree of similarity with corresponding enzymes from three different organisms. The location of some strictly conserved regions may have important implications for PEPC activity and allostery.  相似文献   

10.
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.  相似文献   

11.
A gene coding for thermophilic beta-amylase of Clostridium thermosulfurogenes was cloned into Bacillus subtilis, and its nucleotide sequence was determined. The nucleotide sequence suggested that the thermophilic beta-amylase is translated from monocistronic mRNA as a secretory precursor with a signal peptide of 32 amino acid residues. The deduced amino acid sequence of the mature beta-amylase contained 519 residues with a molecular weight of 57,167. The amino acid sequence of the C. thermosulfurogenes beta-amylase showed 54, 32, and 32% homology with those of the Bacillus polymyxa, soybean, and barley beta-amylases, respectively. Twelve well-conserved regions were found among the amino acid sequences of the four beta-amylases. To elucidate the mechanism rendering the C. thermosulfurogenes beta-amylase thermophilic, its amino acid sequence was compared with that of the B. polymyxa beta-amylase. The C. thermosulfurogenes beta-amyulase contained more Cys residues and fewer hydrophilic amino acid residues than the B. polymyxa beta-amylase did. Several regions were found in the amino acid sequence of the C. thermosulfurogenes beta-amylase, where the hydrophobicity was remarkably high as compared with that of the corresponding regions of the B. polymyxa beta-amylase.  相似文献   

12.
The sequence of the gene from Nocardia sp. NRRL 5646 encoding GTP cyclohydrolase I (GCH), gch, and its adjacent regions was determined. The open reading frame of Nocardia gch contains 684 nucleotides, and the deduced amino acid sequence represents a protein of 227 amino acid residues with a calculated molecular mass of 24,563Da. The uncommon start codon TTG was identified by matching the N-terminal amino acid sequence of purified Nocardia GCH with the deduced amino acid sequence. A likely ribosomal binding site was identified 9bp upstream of the translational start site. The 3' end flank region encodes a peptide that shares high homology with dihydropteroate synthases. Nocardia GCH has 73 and 60% identity to the proteins encoded by the putative gch of Mycobacterium tuberculosis and Streptomyces coelicolor, respectively. Nocardia GCH was highly expressed in Escherichia coli cells carrying a pHAT10 based expression vector, and moderately expressed in Mycobacterium smegmatis cells carrying a pSMT3 based expression vector. Enterokinase digestion of recombinant Nocardia GCH, and in-gel digestion of Nocardia GCH and recombinant GCH followed by MALDI-TOF-MS analysis, confirmed that the actual subunit size of the enzyme was 24.5kDa. Thus, we conclude that the active form of native Nocardia GCH is a decamer. Our earlier incorrect conclusion was that the native enzyme was an octamer derived from the anomalous SDS-PAGE migration of the subunit.  相似文献   

13.
Internal homologies in an amino acid sequence of a protein and in amino acid sequences of two different proteins are examined, using correlation coefficients calculated from the sequences when residues are replaced by various quantitative properties of the amino acids such as hydrophobicity. To improve the signal-noise ratio the average correlation coefficient is used to detect homology because the correlation depends on the property considered. In this way, any sequence repetition in a protein and the extent of the similarity and difference among proteins can be estimated quantitatively. The procedure was applied first to the sequences of proteins which have been assumed on other grounds to contain some internal sequence repetitions, α-tropomyosin from rabbit skeletal muscle, calmodulin from bovine brain, troponin C from skeletal and cardiac muscle, and then to the sequences of calcium binding proteins, calmodulin, troponin C, and L2 light chain of myosin. The results show that α-tropomyosin has a markedly periodic sequence at intervals of multiples of seven residues throughout the whole sequence, and calmodulin and skeletal troponin C contain two homologous sequences, the homology of troponin C being weaker than that of calmodulin. Candidates for the calcium binding regions of both troponin C, calmodulin, and L2 light chain are the homologous parts having a high average correlation coefficient (about 0·5) with respect to the sequences of the CD and EF hand regions of carp parvalbumin. The procedure may be a useful method for searching for homologous segments in amino acid sequences.  相似文献   

14.
M Haniu  T Iyanagi  P Miller  T D Lee  J E Shively 《Biochemistry》1986,25(24):7906-7911
The complete amino acid sequence of porcine hepatic microsomal NADPH-cytochrome P-450 reductase has been determined by microsequence analysis on several sets of proteolytic fragments. Sequence studies were performed initially on a 20-kilodalton (kDa) fragment and then on 80-kDa fragment. The amino-terminal end of the mature protein was blocked with an acetyl group, followed by 676 amino acid residues. It has been revealed that the COOH-terminal 20-kDa fragment has been derived from original enzyme by cleavage at the Asn-Gly (residues 502-503) linkage by an unknown mechanism. An NADPH-protected cysteine residue is located at residue 565, near a region exhibiting high sequence homology with ferredoxin-NADP+ reductase. The FMN and FAD binding regions are possibly located in the amino-terminal region and the middle part of the protein molecule, respectively, as suggested by Porter and Kasper [Porter, T. D., & Kasper, C. B. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 973-977]. When this sequence is compared with that of rat enzyme, 60 amino acid residues are substituted, probably due to species differences. However, total sequence homology between these enzymes is 90%. Hydropathy plot analysis reveals that two regions from residues 27-43 and from residues 523-544 exhibit a high degree of hydrophobicity, suggesting membrane binding or interaction with cytochrome P-450.  相似文献   

15.
Corynebacterium glutamicum mutant KY9707 was originally isolated for lysozyme-sensitivity, and showed temperature-sensitive growth. Two DNA fragments from a wild-type C. glutamicum chromosomal library suppressed the temperature-sensitivity of KY9707. These clones also rescued the lysozyme-sensitivity of KY9707, although partially. One of them encodes a protein of 382 amino acid residues, the N-terminal domain of which was homologous to RNase HI. This gene suppressed the temperature-sensitive growth of an Escherichia coli rnhA rnhB double mutant. We concluded that this gene encodes a functional RNase HI of C. glutamicum and designated it as rnhA. The other gene encodes a protein of 707 amino acid residues highly homologous to RecG protein. The C. glutamicum recG gene complemented the UV-sensitivity of E. coli recG258::kan mutant. KY9707 showed increased UV-sensitivity, which was partially rescued by either the recG or rnhA gene of C. gluamicum. Point mutations were found in both recG and rnhA genes in KY9707. These suggest that temperature-sensitive growth, UV-sensitivity, and probably lysozyme-sensitivity also, of KY9707 were caused by mutations in the genes encoding RNase HI and RecG.  相似文献   

16.
17.
A gene encoding the salicylate hydroxylase was cloned from the genomic DNA of Pseudomonas fluorescens SME11. The DNA fragment containing the nahG gene for the salicylate hydroxylase was mapped with restriction endonucleases and sequenced. The DNA fragment contained an ORF of 1,305 bp encoding a polypeptide of 434 amino acid residues. The nucleotide and amino acid sequences of the salicylate hydroxylase revealed several conserved regions with those of the enzyme encoded in P. putida PpG7: The homology of the nucleotide sequence is 83% and that of amino acid sequence is 72%. We found large conserved regions of the amino acid sequence at FAD and NADH binding regions. The FAD binding site is located at the amino terminal region and a lysine residue functions as a NADH-binding site.  相似文献   

18.
19.
20.
Electrophoresis of a Corynebacterium glutamicum membrane preparation in the presence of sodium dodecyl sulfate, followed by staining for peroxidase activity (heme staining), showed only one band at about 28 kDa. This 28 kDa protein was purified from C. glutamicum membranes by chromatography in the presence of decylglucoside using DEAE-Toyopearl and hydroxylapatite columns, as the sole c-type cytochrome in the bacterium. The cytochrome showed an alpha band at 551 nm, and its E(m, 7) was about 210 mV. A QcrCAB operon encoding the subunits of a putative quinol cytochrome c reductase was found 3'-downstream of ctaE encoding subunit III of cytochrome aa(3) in the C. glutamicum genome. The deduced amino acid sequence of qcrC, composed of 283 amino acid residues, contained two heme C-binding motifs and was in agreement with partial peptide sequences obtained from the 28 kDa protein after V8 protease digestion. We propose to name this protein cytochrome cc. The presence of cytochrome cc is a common feature of high G+C content Gram-positive bacteria, since we could confirm this protein by electrophoresis; homologous QcrCAB operons are also known in Mycobacterium and Streptomyces. QcrA and qcrB of C. glutamicum encode the Rieske Fe-S protein and cytochrome b, respectively, although these proteins were not co-purified with cytochrome cc. The phylogenetic tree of cytochromes b and b(6) show that C. glutamicum cytochrome b, along with those of other bacteria in the high G+C group, is rather different from the Bacillus counterparts, but highly similar to the Deinococci and Thermus cytochromes. This indicates that there is a fourth group of bacteria in addition to the three clades: proteobacterial cytochrome b, cyanobacterial b(6) and green sulfur-low G+C Gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号