首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell adhesion molecules (CAM) participate in interactions between lymphocytes, accessory cells, and target cells that are critical in the generation of effective immune responses. To characterize the involvement of CAM in NK and lymphokine activated killer (LAK) activities, we examined the expression of several CAM by freshly isolated human NK cells and by NK cells activated in vitro with IL-2, and compared this to CAM expression by T lymphocytes under similar conditions. Freshly isolated human NK cells were uniformly LFA-3 (CD58)+ and expressed two to three-fold higher surface levels of LFA-1 (CD11a/CD18) than resting T lymphocytes. More NK cells than T cells also expressed phenotypically detectable levels of intercellular adhesion molecule-1 (CD54). After in vitro incubation with IL-2, human NK cells demonstrated four- to sixfold increases in surface levels of CD11a/CD18, CD2, CD54, CD58, and the NK cell-associated Ag NKH-1 (CD56). Furthermore, essentially all NK cells became CD54+ within 3 days of exposure to IL-2. T cells did not demonstrate comparable up-regulation of CAM after incubation with IL-2. Increases in NK cell CAM expression were associated with enhanced formation of E:T cell conjugates, enhanced killing of NK-sensitive targets, and the induction of cytotoxicity for previously NK-resistant targets (LAK activity). The LAK activity induced by exogenous IL-2 could be partially inhibited by anti-CD2, anti-CD11a, or anti-CD54 antibodies and almost completely abrogated by anti-CD2 and anti-CD11a in combination. These studies suggest that CAM play a central role in the regulation of NK cytolysis, and that changes in CAM expression may alter the target cell specificity of activated NK effectors.  相似文献   

2.
Human large granular lymphocytes with the NK cell phenotype (CD16+ or CD56+CD3-) were greatly enriched among the cells which migrated spontaneously through untreated or albumin-coated, 3-microns pore size polycarbonate filters for 1 to 8 h. Three days of rIL-2 treatment (300 IU/ml) and 3 to 5 wk of rIL-2 treatment (100 IU/ml) generated a 2.7 +/- 0.9-fold and 5.6 +/- 0.8-fold increase in cell migration, respectively. The adhesion and subsequent migration of freshly isolated NK cells was mainly mediated by CD11b/CD18, because migration could be inhibited by 80 +/- 8% anti-CD11b (Mac-1) antibodies but not with antibodies against CD11a (LFA-1) or CD11c (p150,95), the other alpha-chains of the beta 2-integrins. After rIL-2 activation, however, CD11a/CD18 was the major receptor utilized in migration, inasmuch as anti-CD11a antibody caused a 69 +/- 8% reduction in the number of migrated cells. Anti-CD11b antibody decreased migration by 43 +/- 12%, and together these antibodies inhibited migration by 82 +/- 7%. Anti-CD11a alone did not have any effect on adhesion, but CD11a/CD18 cooperated in the adhesion because anti-CD11b decreased adhesion by 40 +/- 11% and together these antibodies inhibited adhesion by 74 +/- 6%. The ability of large granular lymphocytes to rapidly utilize beta 2-integrins and unidentified ubiquitous ligands for binding and migration may be significant for their capacity to function in the first line of immune defense under highly variable conditions.  相似文献   

3.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

4.
The beta2 integrin LFA-1 (CD11a/CD18) mediates adhesion of lymphocytes to cells expressing ICAM. The strength of this adhesion is regulated by different signals delivered by cytokines and chemokines, and by the TCR in the case of T cells. To determine the receptor-ligand interactions required for adhesion of resting NK cells, Drosophila cells expressing different combinations of ligands of human NK cell receptors were generated. Expression of ICAM-1 alone was sufficient for an adhesion of resting NK cells that was sensitive to inhibitors of src family kinase and of phosphatidylinositol 3-kinase. Binding of resting NK cells to solid-phase ICAM-1 showed similar signaling requirements. A pulse of either IL-2 or IL-15 to resting NK cells resulted in strongly enhanced, actin-dependent adhesion to insect cells expressing ICAM-1 alone. Coexpression of either LFA-3 (CD58) or CD48 with ICAM-1 resulted in strong adhesion by resting NK cells, even in the absence of cytokines. Therefore, receptors for LFA-3 and CD48 on resting NK cells strengthen the adhesion mediated by LFA-1.  相似文献   

5.
Effect of mAb against the CD11a-c, CD18, and GP84 adhesion molecules on the binding and cytotoxicity of human NK cells was studied. The target cells were K562, MOLT-4, Raji, and fresh uncultured autologous endometrial carcinoma cells. Antibodies against adhesion relevant epitopes of CD11a(TA-1/LFA-1), CD11b(Mol/OKM1/Mac1), or CD11c (Leu-M5) did not inhibit NK function. The mAb 60.3 against CD18, the common beta-chain associated to CD11a-c, strongly inhibited both the binding and cytotoxicity of large granular lymphocytes (LGL) against all the target cells tested. Also the antibody LB-2 against the GP84 adhesion molecule inhibited NK function to some degree. 60.3 and LB-2 antibodies exerted an additive effect in the inhibition of both binding and cytotoxicity. However, even this antibody combination did not completely block NK activity, suggesting a heterogeneity of adhesion structures in the NK system. According to both FACS analyses and immunoprecipitation studies, all the tested antibodies recognized either a subpopulation or all of LGL. On the other hand, antibodies against CD11b, CD11c, and LB-2 showed only marginal reactivity with highly purified LGL-free T cells.  相似文献   

6.
Cytotoxicity and proliferation of NK-like T (CIK) cells are dependent on the continuous presence of exogenous cytokines, but it is not known which cytokine is optimal. Here, we compared the effect of exogenous interleukin 2 (IL-2), interleukin 7 (IL-7) or interleukin 12 (IL-12) on the generation of CIK cells in addition to IL-1, interferon-gamma and anti-CD3 antibodies. Cell surface markers important for cytotoxic activity and adhesion were defined and cytokines leading to their optimal expression were determined. The most important findings were: (a) IL-12 generates the most CD3/CD56-double-positive CIK cells, (b) the expression of LFA-1/CD11a which is important for cytotoxic activity is highest with IL-7, and (c) IL-7 also generates the most CD28-positive cells which may enhance T cell receptor co-stimulation. In summary, essential differences concerning antigen expression were found when generating CIK cells using IL-7 or IL-12 instead of IL-2. In particular, IL-12 may be of interest due to the high expansion of CD56 positive cells in CIK cell cultures and the important role of these cells in mediating cytotoxicity towards malignant tissues.  相似文献   

7.
Contact with natural killer (NK)-resistant monolayer targets is an inhibitory signal to NK cells. In this study, we have analyzed the effect of such effector/target cell interactions on the CD16 (FcRIII) expression on lymphocytes and the role of CD16 and interleukin-2 (IL-2) in the reactivation of their cytolytic machinery. Coculturing peripheral blood mononuclear cells with NK-resistant monolayer cells did not change the percentage of CD 16-positive effector cells, although this treatment effectively inhibited their cytotoxicity against NK-sensitive targets. The inhibited effector cells partially regained their activity by incubating for 24 h in medium supplemented with 10% fetal calf serum (FCS), whereas human albumin-, newborn calf serum- or human AB serum-supplemented media had no reactivating effect. Monoclonal class IgG1, IgG2a and IgM anti-CD16 antibodies [Abs; 3G8, CLB-CD16 (CLB-FcR gr1) and Leu 11b], and normal rabbit IgG (NR-IgG) prevented the FCS-mediated reactivation of cytotoxicity, whereas nonreactive control Abs significantly enhanced it. The detection of the CD16 antigen by the monoclonal anti-CD16 Abs Leu 11a and Leu 11c was blocked by the above anti-CD16 Abs and NR-IgG, while the expression of other NK cell-associated surface molecules (CD2, CD56) remained unchanged. Mere blocking of CD16, using a short-term incubation with anti-CD16 Abs, had an insignificant effect on endogenous NK activity, suggesting that CD16 is involved in NK cell (re)activation rather than in the killing process itself. In the presence of IL-2, inactivated effector cells also regained their killing activity. The IL-2-induced reactivation was not inhibited by anti-CD16 Abs. The results suggest that FCS-derived factors and soluble nonreactive immunoglobulins enhance the NK activity of down-regulated effector cells via CD16, and that CD16 and IL-2 receptors represent alternative independent pathways of NK cell reactivation.  相似文献   

8.
We evaluated the effect of the antibodies to adhesion molecules CD2, CD11a/CD18 (LFA-1), and CD56 (N-CAM) on MHC-unrestricted cytotoxicity mediated by polyclonal NK cells and LAK cells or by CD3+ or CD3- cytolytic cell clones against a panel of tumor cell targets selected according to expression or absence of the corresponding ligands. We show that (i) antibodies to CD11a/CD18 and, to a lesser extent, antibodies to CD2 inhibit target cell lysis, whereas anti-CD56 antibodies exert little if any effect; (ii) in a model system using polyclonal NK/LAK cells as effectors and K562 or HL60-R (NK-resistant) cells as targets, inhibition of cytotoxicity occurs without a significant impairment of effector to target cell binding; (iii) the cytotoxic function of CD3+ or CD3- cytotoxic cell clones is inhibited differentially by antibodies to adhesion molecules; (iv) conjugates formed in the presence of antibodies which inhibit target cell lysis display a significant reduction of target to effector cell contact surface; and (v) this may lead to defective activation of effector cells, as indicated by lack of redistribution of the microtubular apparatus. We conclude that (i) MHC-unrestricted cytotoxicity is regulated by a number of molecular interactions that span far beyond our present knowledge and that it is strictly dependent on the surface phenotype of the effector cell and of the target cell; (ii) in certain types of effector/target cell interactions, antibodies to adhesion molecules do not prevent conjugate formation but reduce the extent of cell-to-cell surface contact which, in turn, leads to defective activation of the effector cell and, therefore, to inhibition of target cell lysis.  相似文献   

9.
In the present study we provide the first evidence supporting the fact that the Kp43 NK-associated cell-surface dimer may be involved in regulating MHC-unrestricted cytotoxicity. Our results indicated that incubation of IL-2-activated NK cells in a 51Cr-release assay with either the Kp43-specific mAb or its F(ab')2 fragments induced a significant cytolytic activity directed against normal autologous and allogeneic T cell blasts, which are relatively resistant to NK cell-mediated lysis. The cytotoxic effect was not observed in fresh CD3- CD16+ CD56+ Kp43+ lymphocytes and was only substantiated in IL-2-preactivated NK cells. Although stimulation with the Kp43-specific mAb did not significantly change the intracellular Ca2+ concentration, both Ca2+ and Mg2+ were required for the induction of cytotoxicity. The anti-Kp43-mediated activation of cytolysis was inhibited by anti-CD18 and CD11a mAb, whereas it was not significantly altered by either CD11b, CD11c, CD2, or LFA-3-specific mAb, rendering unlikely the participation of the latter. In contrast to these results the Kp43-specific mAb did not enhance the high levels of spontaneous cytotoxicity mediated by IL-2-activated NK cells against a panel of different tumor cell lines. An inhibitory effect mediated by anti-Kp43 mAb on the IL-2-dependent proliferation of NK cells was previously reported and appears, at least partially, secondary to the induction of an autolytic mechanism that is synergistically enhanced by anti-CD16 mAb. Altogether our results point out that interaction of the Kp43 dimer with its specific mAb is capable of inducing cytolytic activity and suggest that the molecule may play an important functional role in lymphokine-activated NK cells.  相似文献   

10.
The aim of this prospective study was to define the flow cytometric characteristics of simultaneously investigated bone marrow and peripheral blood plasma cells antigens expression in 36 plasma cell leukemia (PCL) patients. The immunophenotypic profile of plasma cells was determined with a panel of monoclonal antibodies. The antigen expression intensity was calculated as relative fluorescence intensity (RFI). Bone marrow plasma cells showed expression of particular antigens in the following proportion of cases: CD49d 100%, CD29 94%, CD54 93%, CD44 83%, CD56 60%, CD18 26%, CD11b 29%, CD11a 19%, CD117 27%, CD71 30%, CD126 100% and CD19 0%, while the expression of those antigens on peripheral blood plasma cells was present in the following percentage of patients: CD49d 100%, CD29 96%, CD54 93%, CD44 95%, CD56 56%, CD18 50%, CD11b 53%, CD11a 29%, CD117 26%, CD71 28%, CD126 100% and CD19 0%. The expression of CD54 was significantly higher than that of adhesion molecules belonging to the integrin b2 family: CD11a, CD18 and CD11b, on both bone marrow and peripheral blood cells (p < 0.01). Expression of CD18, CD11a and CD11b was differential between two cell compartments: lower on bone marrow and higher on peripheral blood cells. We found that plasma cells in the bone marrow of patients with plasma cell leukaemia showed significantly greater granularity and size than those in the peripheral blood (p = 0.0001 and p = 0.04, respectively). However, no differences in cell size or granularity were revealed between bone marrow plasma cells from patients with PCL and multiple myeloma. In conclusion, impaired expression of adhesion molecules such as CD11a/CD18 (LFA-1) or CD56 may explain hematogenic dissemination characterizing PCL. The following pattern of adhesion molecule expression according to the proportion of plasma cells expressing a given antigen in peripheral blood and bone marrow and arranged in diminishing order may be established: CD49d > CD44 > CD54 > CD29 > CD56 > CD18 > CD11b > CD11a. Immuno-phenotyping of plasma cells in PCL, as in multiple myeloma, might be useful in detecting minimal residual disease in cases with aberrant antigen expression and for selecting therapeutic agents towards specific membrane targets.  相似文献   

11.
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.  相似文献   

12.
Cell adhesion molecules (CAM) represent a large group of cell surface protein moieties with distinctive biological functions. In physiological terms they ascertain cell to cell contact such as cell cohesion of epithelia, condition cell migration and transmigration via biological membranes such as blood vessel walls, provide means for homing cells in a new microenvironment etc. These features of CAM are exploited by tumor cells to grow and spread in a tumor bearing host. CD56/N-CAM antigen is 140 kD isoform of neural cell adhesion molecule. N-CAM belongs to the large Ig superfamily of CAMs. CD56 can be traced at various sites, including nervous tissue, neuro-muscular junctions, neuroendocrine and endocrine organs. It is well known as a differentiation antigen of natural killer (NK) cells. Its role and function are far from clear, but its adhesion properties are evident in cell-cell (homophilic) interactions. CD56 has been, however, demonstrated the cells various human malignancies. Tumors of the nervous system such as neuroblastoma, are well known to express this marker. Malignant lymphomas of T-NK cell origin bear CD56, as well as multiple myeloma, melanoma and some cancers of epithelial origin. These data suggest that CD56/N-CAM antigen is, in some unknown manner involved in tumor biology.  相似文献   

13.
The preferential growth of CD3-CD2-CD11a/CD18- thymocytes was obtained by stimulation of CD2-CD3- thymic cells with low doses of PMA (0.5 ng/ml) and subsequent culture in the presence of recombinant interleukin-2 (100 U/ml). After 2-3 weeks, CD3-CD2-CD11a/CD18- thymocytes represented 40-60% of the total proliferating cells. Highly purified CD3-CD2-CD11a/CD18- cell populations were obtained by depletion of the CD11a/CD18+ thymocytes by immunomagnetic beads. Moreover, these populations proliferated for 2-5 weeks and did not change their surface phenotype. It is of note that these cells, despite the lack of CD2 and CD11a/CD18 adhesion molecules, could bind to umbilical vein endothelial cells as efficiently as did CD3+CD2+CD11a/CD18+ thymocytes. Furthermore we demonstrate that (a) CD56 molecule is involved in the adhesion of CD3-CD2-CD11a/CD18- thymic cells, but not of peripheral CD3-CD56+ lymphocytes, to untreated or IFN-gamma- and/or TNF-alpha-treated endothelium, (b) anti-CDw49d mAb could inhibit the adhesion of this thymus-derived population to either IFN-gamma- or TNF-alpha-treated endothelial cells but not to untreated endothelium, and (c) CD56 antigen expressed by these cultured thymocytes has a sialic acid content different from that of peripheral lymphocytes. Indeed, isoelectrofocusing analysis showed that CD56 molecule expressed on CD3-CD2-CD11a/CD18- thymocytes displayed an isoelectric point (pI 5.0) different from that of CD56 antigen expressed by peripheral NK cells (pI 4.7 and 5.4). Further, we noted that CD56 antigen showed the same pI 5.8 after desialylation obtained using neuraminidase treatment. Finally, CD3-CD2-CD11a/CD18- thymocytes mobilized Ca2+ and released TNF-alpha and IFN-gamma after treatment with lectins.  相似文献   

14.
The 50 KD sheep red blood cell antigen receptor CD2 is the earliest T cell differentiation marker and is present on all blood-derived T cells, including natural killer (NK) cells. The CD2 antigen is also known to serve as an important activation site regulating various T cell functions. We report that anti-CD2 monoclonal antibodies (MAb) block MHC-restricted class I- and class II-specific cytolysis by CD2+, CD3+ clones of the relevant target cells, irrespective of whether lysis by these clones is blocked by anti-CD3 or anti-CD8 MAb. Moreover, anti-CD2 MAb (but not anti-CD3 MAb) are able to reduce MHC-nonrestricted, nonspecific cytolysis: a) by CD2+, CD3+ clones of K562 target cells; and b) by CD2+, CD3 NK clones of K562 as well as Daudi cells. Different preparations of anti-CD2 MAb vary in their capacity to inhibit cytolysis. For cloned effector cells, the percent inhibition of lysis by CLB-T11 greater than Lyt-3 MAb, whereas with "fresh" NK cells, the lysis inhibitory ability of Lyt-3 greater than CLB-T11. The antibody-dependent cellular cytotoxicity by "fresh" and cloned NK cells is not inhibited by anti-CD2 MAb. Anti-CD2 MAb also prevent the induction of lysis by cross-linked anti-CD3 MAb, e.g., by CD2+, CD3+ cloned cloned cells against (IgG-FcR+) Daudi cells. Anti-CD2 MAb can also induce cytolysis in some, but not all, CD2+, CD3- NK clones against xenogeneic P815 mouse mastocytoma cells. Anti-CD2 MAb, in combination with lectins (PHA or Con A: pretreatment of effector cells), can also induce cytolytic activity by CD2+, CD3+ clones against Daudi cells. Our data therefore support the concept that the CD2 antigen is an important activation site regulating a wide variety of T cell functions including cytolysis. Whether ligand interaction with the CD2 antigens results in augmentation or inhibition of T cell functions may very well depend on the type of CD2 antigen-ligand interaction, e.g., cross-linked ligand-receptor interaction may, in general, enhance the various T cell functions, whereas noncross-linked ligand-receptor interactions may inhibit such functions, as we and other investigators demonstrated earlier for the CD3/Ti antigen-receptor complex activation site.  相似文献   

15.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

16.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

17.
18.
Lymphokine-activated killer (LAK) cells are peripheral blood lymphocytes (PBLs) that possess the ability to kill target cells in a non-major histocompatibility complex (MHC)-restricted manner. Both NK and T cells can be stimulated with interleukin-2 (IL-2) to become LAK cells. We previously reported that the interaction of LAK cells with tumor cells also induces the secretion of interferon-gamma (IFN-gamma). The NK subset of LAK (LAK-NK) cells is stimulated by tumor cells to secrete IFN-gamma in a non-MHC-restricted manner while the T cell subset of LAK (LAK-T) cells is stimulated to secrete IFN-gamma upon cross-linking of the T cell receptor (TCR)-CD3 complex. We here report that LAK-T cells stimulated with anti-CD3 mAbs and tumor cells secrete two additional cytokines, tumor necrosis factor-alpha (TNF-alpha) and TNF-beta/lymphotoxin (TNF-beta). In addition, we demonstrate that at least four other structurally unrelated molecules, in addition to the TCR-CD3 complex, on LAK-T cells participate in the stimulation of IFN-gamma, TNF-alpha, and TNF-beta production. These molecules are the lymphocyte function associated antigen-1 (LFA-1), lymphocyte function associated antigen-2 (LFA-2), CD44, and CD45. LFA-1 is an integrin, LFA-2 is a member of the immunoglobulin supergene family, CD44 is homologous to the cartilage link proteins, and CD45 is a tyrosine phosphatase. Ligands to three of these molecules have been identified; ICAM-1, LFA-3, and hyaluronic acid binding to LFA-1, LFA-2, and CD44, respectively. LFA-1, LFA-2, and CD44 are reported to function both as adhesion molecules and as costimulators in resting T cells. Our data suggest that these three molecules enhance IFN-gamma, TNF-alpha, and TNF-beta production by augmenting LAK-T cell to tumor cell adhesion and also by functioning as costimulators.  相似文献   

19.
Patients with the leukocyte adhesion deficiency (LAD) syndrome have a genetic defect in the common beta 2-chain (CD18) of the leukocyte integrins. This defect can result in the absence of cell surface expression of all three members of the leukocyte integrins. We investigated the capacity of T cell clones obtained from the blood of an LAD patient and of normal T cell clones to adhere to human umbilical vein endothelial cells (EC). Adhesion of the number of LAD T cells to unstimulated EC was approximately half of that of leukocyte function-associated antigen (LFA)-1+ T cells. Stimulation of EC with human rTNF-alpha resulted in an average 2- and 2.5-fold increase in adhesion of LFA-1+ and LFA-1- cells, respectively. This effect was maximal after 24 h and lasted for 48 to 72 h. The involvement of surface structures known to participate in cell adhesion (integrins, CD44) was tested by blocking studies with mAb directed against these structures. Adhesion of LFA-1+ T cells to unstimulated EC was inhibited (average inhibition of 58%) with mAb to CD11a or CD18. Considerably less inhibition of adhesion occurred with mAb to CD11a or CD18 (average inhibition, 20%) when LFA-1+ T cells were incubated with rTNF-alpha-stimulated EC. The adhesion of LFA-1- T cells to EC stimulated with rTNF-alpha, but not to unstimulated EC, was inhibited (average inhibition, 56%) by incubation with a mAb directed to very late antigen (VLA)-4 (CDw49d). In contrast to LAD T cell clones and the LFA-1+ T cell line Jurkat, mAb to VLA-4 did not inhibit adhesion of normal LFA-1+ T cell clones to EC, whether or not the EC had been stimulated with rTNF-alpha. We conclude that the adhesion molecule pair LFA-1/intercellular adhesion molecule (ICAM)-1 plays a major role in the adhesion of LFA-1+ T cell clones derived from normal individuals to unstimulated EC. Adhesion of LFA-1-T cells to TNF-alpha-stimulated EC is mediated by VLA-4/vascular cell adhesion molecule (VCAM)-1 interactions. Since we were unable to reduce significantly the adhesion of cultured normal LFA-1+ T cells to 24 h with TNF-alpha-stimulated endothelium with antibodies that block LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions, and lectin adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 appeared not to be implicated, other as yet undefined cell surface structures are likely to participate in T cell/EC interactions.  相似文献   

20.
The modulation of adhesion molecules on human large granular lymphocytes (LGL) by interleukin (IL)-2 was investigated both in vivo and in vitro. Intercellular adhesion molecule-1 (ICAM-1; CD54) expression increased on LGL of cancer patients receiving IL-2 adoptive immunotherapy. ICAM-1 expression on LGL isolated by Percoll gradient centrifugation, LGL purified, and expanded by adherence to plastic surfaces and LGL identified by Leu 19 (CD56) monoclonal antibody were increased significantly in response to IL-2 in vitro. Exposure of LGL to IL-1, interferon (IFN)-gamma, and tumor necrosis factor (TNF) in vitro did not induce ICAM-1. The expression of LFA-1 (CD11a/CD18), a receptor for ICAM-1, and other leukocyte adhesion molecules, including Mac-1 (CD11b/CD18) and p150,95 (CD11c/CD18), was only maintained by IL-2. IL-2 induction of ICAM-1 and the maintenance of CD18 complex expression on small lymphocytes separated by Percoll gradients were similar to that on LGL. We conclude that IL-2 enhances the expression of ICAM-1 on multiple human lymphocyte populations including LGL effectors. Expression of the CD18 complex on LGL does not appear to be highly regulated by IL-2. These findings may have implications relevant to the role of these adhesion molecules in the activities of LGL modulated by IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号