首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caenorhabditis elegans body wall muscle has two distinct myosin heavy chain isoforms, mhcA and mhcB. Mutations eliminating the major isoform, mhcB, have previously been shown to yield paralyzed, viable animals. In this paper we show that the minor isoform, mhcA, is essential for viability. We have utilized the known physical map position of the gene encoding mhcA to obtain two recessive lethal mutations that virtually eliminate accumulation of mhcA. The mutations are allelic, and the interactions of these alleles with mutations affecting other thick filament components are consistent with the hypothesis that the new mutations lie in the structural gene for mhcA. The homozygous mutant animals move very little and morphological analysis shows that thick filament assembly is severely impaired. Together with the location of mhcA in the center of the thick filament (Miller et al., 1983), the results suggest that mhcA has a unique role in initiating filament assembly. The homozygous mutations have an unexpected effect on morphogenesis that indicates an interaction between the muscle cells and the hypodermis during development. The resultant phenotype may be useful in the search for additional essential muscle genes.  相似文献   

2.
Deletion of the synapsin I genes, encoding one of the major groups of proteins on synaptic vesicles, in mice causes late onset epileptic seizures and enhanced experimental temporal lobe epilepsy. However, mice lacking synapsin I maintain normal excitatory synaptic transmission and modulation but for an enhancement of paired-pulse facilitation. To elucidate the cellular basis for epilepsy in mutants, we examined whether the inhibitory synapses in the hippocampus from mutant mice are intact by electrophysiological and morphological means. In the cultured hippocampal synapses from mutant mice, repeated application of a hypertonic solution significantly suppressed the subsequent transmitter release, associated with an accelerated vesicle replenishing time at the inhibitory synapses, compared with the excitatory synapses. In the mutants, morphologically identifiable synaptic vesicles failed to accumulate after application of a hypertonic solution at the inhibitory preterminals but not at the excitatory preterminals. In the CA3 pyramidal cells in hippocampal slices from mutant mice, inhibitory postsynaptic currents evoked by direct electrical stimulation of the interneuron in the striatum oriens were characterized by reduced quantal content compared with those in wild type. We conclude that synapsin I contributes to the anchoring of synaptic vesicles, thereby minimizing transmitter depletion at the inhibitory synapses. This may explain, at least in part, the epileptic seizures occurring in the synapsin I mutant mice.  相似文献   

3.
4.
E Prochniewicz  D D Thomas 《Biochemistry》2001,40(46):13933-13940
We have examined the effects of actin mutations on myosin binding, detected by cosedimentation, and actin structural dynamics, detected by spectroscopic probes. Specific mutations were chosen that have been shown to affect the functional interactions of actin and myosin, two mutations (4Ac and E99A/E100A) in the proposed region of weak binding to myosin and one mutation (I341A) in the proposed region of strong binding. In the absence of nucleotide and salt, S1 bound to both wild-type and mutant actins with high affinity (K(d) < microM), but either ADP or increased ionic strength decreased this affinity. This decrease was more pronounced for actins with mutations that inhibit functional interaction with myosin (E99A/E100A and I341A) than for a mutation that enhances the interaction (4Ac). The mutations E99A/E100A and I341A affected the microsecond time scale dynamics of actin in the absence of myosin, but the 4Ac mutation did not have any effect. The binding of myosin eliminated these effects of mutations on structural dynamics; i.e., the spectroscopic signals from mutant actins bound to S1 were the same as those from wild-type actin. These results indicate that mutations in the myosin binding sites affect structural transitions within actin that control strong myosin binding, without affecting the structural dynamics of the strongly bound actomyosin complex.  相似文献   

5.
The studies reported in this paper were undertaken to compare the steady-state kinetics of ATPase of purified platelet actomyosin and myosin free of actin. Actomyosin exhibits highly sigmoid kinetics with at least two interacting ATP or UTP binding sites. These studies were done at O.6 m KCl where actin and myosin are generally supposed to be dissociated in the presence of these nucleotides (M. Gallaghar, T. C. Detwiler, and A. Stracher, 1976, in Cell Motility (Goldman, R., Pollard, T., and Rosenbaum, J., eds.), Vol. 3, Part A, pp. 475–485 Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.; A. Weber, 1969, J. Gen Physiol.53, 781–791). When the dissociation of platelet actomyosin was actually investigated by a sucrose density gradient technique under conditions which were similar to those of the steady-state kinetic experiments, only partial dissociation of actin from myosin was observed. This was especially true at low nucleotide concentrations where differences in the sigmoidicity of the saturation curves of actomyosin and actin-free myosin have been observed. These findings suggest that in platelet actomyosin, actin enhances the cooperativity of nucleotide binding sites of myosin by reducing the Km for ATP or UTP. In contrast, the saturation curves of platelet myosin using either ATP or UTP as substrates are less sigmoidal and possess an intermediary plateau region, when analyzed by Hill and reciprocal plots, these data indicate both positive and negative cooperativity suggesting more than two substrate binding sites. Platelet myosin also hydrolyzed other nucleotides (the order of rates being ITP > UTP > UTP > ATP > CTP > GTP). The kinetics of ITP differed from that of ATP or UTP in that no plateau region was observed on the saturation curve. In addition, no cooperativity of ITP binding sites was seen at low substrate concentrations (up to 0.2 mm) but was instead observed at high ITP concentration. It is concluded that conformational changes in myosin induced by ITP may not be necessarily identical to those induced by ATP or UTP.  相似文献   

6.
An LMM fragment (Mr 62,000) of myosin has been prepared which has aggregation properties that are sensitive to the presence of Mg.ATP. Aggregation of the LMM by reducing the ionic strength in the presence of 1 mM Mg.ATP produces non-periodic aggregates which gradually rearrange to paracrystals with a 43 nm axial repeat pattern. This fragment includes the C-terminal end of the myosin rod starting at residue 1376. Therefore, at least one of the Mg.ATP binding sites responsible for this effect is located somewhere along this region of the myosin rod. Although assembly of the rod fragment of myosin into paracrystals does not show sensitivity to Mg.ATP, assembly of intact myosin molecules to form filaments does show sensitivity to Mg.ATP. For myosin filaments, assembly initially gives a broad distribution around a mean length of 1.5 microns, which sharpens around the mean length with time. The rearrangement of the LMM rods and intact myosin molecules both induced by the presence of Mg.ATP are probably related. These findings highlight the complexity of the cooperative interactions between different portions of the myosin molecule that are involved in determining the assembly properties of the intact molecule.  相似文献   

7.
The effects of selected nucleotides (N) on the binding of myosin subfragment 1 (S-1) and pure F-actin (A) were measured by time-resolved fluorescence depolarization for 0.15 M KCl, pH 7.0 at 4 degrees. The association constants K'A, KN, and K'N in the scheme (see article), were determined for the magnesium salts of ADP, adenyl-5'-yl imidodiphosphate AMP-P(NH)P, and PPi. The nucleotide binding site on S-1 was "mapped" with respect to its interaction on the actin binding site. The subsites were the beta- and gamma-phosphoryl groups of ATP bind had the largest effects. A quantitative measure of the interaction, the interaction free energy, was defined as -RT ln (KA/K'A). For ADP, K'A was 2.7 X 10(5) M-1 and the interaction free energy was -4.67 kJ M-1. For AMP-P(NH)P and PPi it was much larger. A ternary complex was shown to exist for ADP, S-1, and actin in the presence of Mg2+ and evidence from AMP-P(NH)P and PPi measurements indicated that ATP also likely forms a ternary complex. The mechanism of (S-1)-actin dissociation is discussed in light of these results.  相似文献   

8.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

9.
The alternatively spliced SM1 and SM2 smooth muscle myosin heavy chains differ at their respective carboxyl termini by 43 versus 9 unique amino acids. To determine whether these tailpieces affect filament assembly, SM1 and SM2 myosins, the rod region of these myosin isoforms, and a rod with no tailpiece (tailless), were expressed in Sf 9 cells. Paracrystals formed from SM1 and SM2 rod fragments showed different modes of molecular packing, indicating that the tailpieces can influence filament structure. The SM2 rod was less able to assemble into stable filaments than either SM1 or the tailless rods. Expressed full-length SM1 and SM2 myosins showed solubility differences comparable to the rods, establishing the validity of the latter as a model for filament assembly. Formation of homodimers of SM1 and SM2 rods was favored over the heterodimer in cells coinfected with both viruses, compared with mixtures of the two heavy chains renatured in vitro. These results demonstrate for the first time that the smooth muscle myosin tailpieces differentially affect filament assembly, and suggest that homogeneous thick filaments containing SM1 or SM2 myosin could serve distinct functions within smooth muscle cells.  相似文献   

10.
Cytoplasmic intermediate filaments (cIFs) are thought to provide mechanical strength to vertebrate cells; however, their function in invertebrates has been largely unexplored. The Caenorhabditis elegans genome encodes multiple cIFs. The C. elegans ifb-1 locus encodes two cIF isoforms, IFB-1A and IFB-1B, that differ in their head domains. We show that both IFB-1 isoforms are expressed in epidermal cells, within which they are localized to muscle-epidermal attachment structures. Reduction in IFB-1A function by mutation or RNA interference (RNAi) causes epidermal fragility, abnormal epidermal morphogenesis, and muscle detachment, consistent with IFB-1A providing mechanical strength to epidermal attachment structures. Reduction in IFB-1B function causes morphogenetic defects and defective outgrowth of the excretory cell. Reduction in function of both IFB-1 isoforms results in embryonic arrest due to muscle detachment and failure in epidermal cell elongation at the 2-fold stage. Two other cIFs, IFA-2 and IFA-3, are expressed in epidermal cells. We show that loss of function in IFA-3 results in defects in morphogenesis indistinguishable from those of embryos lacking ifb-1. In contrast, IFA-2 is not required for embryonic morphogenesis. Our data indicate that IFB-1 and IFA-3 are likely the major cIF isoforms in embryonic epidermal attachment structures.  相似文献   

11.
Regulated disassembly of actin filaments is involved in several cellular processes that require dynamic rearrangement of the actin cytoskeleton. Actin-interacting protein (AIP) 1 specifically enhances disassembly of actin-depolymerizing factor (ADF)/cofilin-bound actin filaments. In vitro, AIP1 actively disassembles filaments, caps barbed ends, and binds to the side of filaments. However, how AIP1 functions in the cellular actin cytoskeletal dynamics is not understood. We compared biochemical and in vivo activities of mutant UNC-78 proteins and found that impaired activity of mutant UNC-78 proteins to enhance disassembly of ADF/cofilin-bound actin filaments is associated with inability to regulate striated organization of actin filaments in muscle cells. Six functionally important residues are present in the N-terminal beta-propeller, whereas one residue is located in the C-terminal beta-propeller, suggesting the presence of two separate sites for interaction with ADF/cofilin and actin. In vitro, these mutant UNC-78 proteins exhibited variable alterations in actin disassembly and/or barbed end-capping activities, suggesting that both activities are important for its in vivo function. These results indicate that the actin-regulating activity of AIP1 in cooperation with ADF/cofilin is essential for its in vivo function to regulate actin filament organization in muscle cells.  相似文献   

12.
13.
Borsos E  Erdélyi P  Vellai T 《Autophagy》2011,7(5):557-559
Apoptosis, the main form of regulated (or programmed) cell death, allows the organism to tightly control cell numbers and tissue size, and to protect itself from potentially damaging cells. This type of cellular self-killing has long been assumed to be essential for early development. In the nematode Caenorhabditis elegans, however, the core apoptotic cell death pathway appears to be dispensable for embryogenesis when most developmental cell deaths take place: mutant nematodes defective for apoptosis develop into adulthood, with superficially normal morphology and behavior. Accumulating evidence indicates a similar situation in mammalian systems as well. For example, apoptosis-deficient mice can grow as healthy, fertile adults. These observations raise the possibility that alternative cell death mechanisms may compensate for the lack of apoptotic machinery in developing embryos. Interestingly, C. elegans embryogenesis can also occur without autophagy, an alternative form of cellular self-destruction (also called autophagic cell death). In an upcoming paper we report that simultaneous inactivation of the autophagic and apoptotic gene cascades in C. elegans arrests development at early stages, and the affected embryos exhibit severe morphological defects. Double-mutant nematode embryos deficient in both autophagy and apoptosis are unable to undergo body elongation or to arrange several tissues correctly. This novel function of autophagy genes in morphogenesis indicates a more fundamental role for cellular self-digestion in tissue patterning than previously thought.  相似文献   

14.
An actin filament sliding on myosin molecules in the presence of an extremely low concentration of ATP exhibited a staggered movement. Longitudinally sliding movement of the filament was frequently interrupted by its non-sliding, fluctuating movements both in the longitudinal and transversal directions. Intermittent sliding movements of an actin filament indicate establishment of a coordination of ATP-mediated active sites distributed along the filament.  相似文献   

15.

Background

Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate.

Methodology/Principal Findings

We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel “reduced genetic code” phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively.

Conclusions/Significance

From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly.  相似文献   

16.
Mef2s are required for thick filament formation in nascent muscle fibres   总被引:3,自引:0,他引:3  
During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres, but not for the earlier steps of skeletal muscle fibre differentiation, elongation, fusion or thin filament gene expression. mef2d mRNA and protein is present in myoblasts, whereas mef2c expression commences in muscle fibres. Knockdown of both Mef2s with antisense morpholino oligonucleotides or in mutant fish blocks muscle function and prevents sarcomere assembly. Cell transplantation and heat-shock-driven rescue reveal a cell-autonomous requirement for Mef2 within fibres. In nascent fibres, Mef2 drives expression of genes encoding thick, but not thin, filament proteins. Among genes analysed, myosin heavy and light chains and myosin-binding protein C require Mef2 for normal expression, whereas actin, tropomyosin and troponin do not. Our findings show that Mef2 controls skeletal muscle formation after terminal differentiation and define a new maturation step in vertebrate skeletal muscle development at which thick filament gene expression is controlled.  相似文献   

17.
The N-terminal domains of cardiac myosin binding protein C (MyBP-C) play a regulatory role in modulating interactions between myosin and actin during heart muscle contraction. Using NMR spectroscopy and small-angle neutron scattering, we have determined specific details of the interaction between the two-module human C0C1 cMyBP-C fragment and F-actin. The small-angle neutron scattering data show that C0C1 spontaneously polymerizes monomeric actin (G-actin) to form regular assemblies composed of filamentous actin (F-actin) cores decorated by C0C1, similar to what was reported in our earlier four-module mouse cMyBP-C actin study. In addition, NMR titration analyses show large intensity changes for a subset of C0C1 peaks upon addition of G-actin, indicating that human C0C1 interacts specifically with actin and promotes its assembly into filaments. During the NMR titration, peaks corresponding to cardiac-specific C0 domain are the first to be affected, followed by those from the C1 domain. No peak intensity or position changes were detected for peaks arising from the disordered proline/alanine-rich (P/A) linker connecting C0 with C1, despite previous suggestions of its involvement in binding actin. Of considerable interest is the observation that the actin-interaction “hot-spots” within the C0 and C1 domains, revealed in our NMR study, overlap with regions previously identified as binding to the regulatory light chain of myosin and to myosin ΔS2. Our results suggest that C0 and C1 interact with myosin and actin using a common set of binding determinants and therefore support a cMyBP-C switching mechanism between myosin and actin.  相似文献   

18.
We have characterized various structural and enzymatic properties of the (68K-30K)-S-1 derivative obtained by thrombic cleavage [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry (preceding paper in this issue)]. The far-ultraviolet CD spectra and thiol reactivity measurements indicated an unchanged overall polypeptide conformation of the enzyme whereas the CD spectra in the near-ultraviolet region suggested a local change in the environments of phenylalanine side chains; the latter finding was rationalized by considering the existence of about five of these amino acids in the vicinity of the cleavage sites. When the binding of Mg2+-ATP and Mg2+-ADP to the derivative was assessed by CD spectroscopy, distinct spectra were obtained with the two nucleotides as with native subfragment 1 (S-1), but some spectral features were unique to the nicked S-1. Stern-Volmer fluorescence quenching studies using acrylamide and the analogues 1,N6-ethenoadenosine 5'-triphosphate and 1,N6-ethenoadenosine 5'-diphosphate indicated that the complexes formed with the modified S-1 have a solute quencher accessibility close to that observed for the complexes with the normal S-1. However, in contrast to the parent enzyme, the thrombin-cut S-1 was unable to bind irreversibly Mg2+-ATP, nor did it form a stable Mg2+-ADP-sodium vanadate complex or achieve the entrapping of Mg2+-ADP after cross-linking of SH1 and SH2 with N,N'-p-phenylenedimaleimide. Additionally, the amplitude of the Pi burst was very low, indicating that the inactivation of the proteolyzed S-1 was linked to the suppression of the hydrolysis step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
19F NMR study of the myosin and tropomyosin binding sites on actin   总被引:1,自引:0,他引:1  
J A Barden  L Phillips 《Biochemistry》1990,29(5):1348-1354
Actin was labeled with pentafluorophenyl isothiocyanate at Lys-61. The label was sufficiently small not to affect the rate or extent of actin polymerization unlike the much larger fluorescein 5-isothiocyanate which completely inhibits actin polymerization [Burtnick, L. D. (1984) Biochim. Biophys. Acta 791, 57-62]. Furthermore, the label resonances in the 376.3-MHz 19F NMR spectrum were unaffected by actin polymerization. However, the binding of the relaxing protein tropomyosin resulted in the fluorinated Lys-61 resonances broadening out beyond detection due to a substantial increase in the effective correlation time of the label. Similarly, the binding of myosin subfragment 1 to F-actin resulted in the dramatic broadening of the labeled Lys-61 resonances. Thus, Lys-61 on actin appears to be closely associated with the binding sites for both tropomyosin and myosin, suggesting that both these proteins can compete for the same site on actin. The other region of actin known to be involved in myosin binding, Cys-10, was found to be more remote from the actin-actin interfaces than Lys-61. Labels on Cys-10 exhibited substantially greater mobility than fluorescein 5-isothiocyanate attached to Lys-61 which appeared to be held down on the surface of the actin monomer. This may sterically hinder the actin-actin interaction about 1 nm from the tropomyosin/myosin binding site.  相似文献   

20.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号