首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clearly positive correlation between the level of substance P (SP) in the taste nerves and cellular serotonin content in the taste buds has been established using fluorescent-histochemical technique. In chronic SP deficiency caused by capsaicin, cellular serotonin content was considerably decreased due to the disturbances in its synthesis and uptake. The injection of exogenous SP resulted in the recovery of the initial serotonin level. The data obtained confirm an important role of SP in the maintenance of the optimal cellular serotonin level owing to the activation of monoamine synthesis and uptake.  相似文献   

2.
Studies have been made of the effect of exogeneous serotonin on responses of taste receptors recorded from the hypoglossal nerve during adequate stimulation. It was shown that serotonin evokes afferent discharge in this nerve and significantly increases responses of taste receptors. Stimulating effect of serotonin appears 15-20 min after its application and gradually develops reaching maximum within 60 min after injection. Competitive antagonist of serotonin, 7-methyltryptamine, inhibits taste afferent responses and blocks stimulating effect of serotonin. Possible role of serotoninergic mechanism in afferent impulse activity of the taste receptive apparatus is discussed.  相似文献   

3.
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.  相似文献   

4.
Effects of serotonin precursors on the metabolism of 5-hydroxytryptamine(5-HT) in dumbbell shaped cells of the frog taste buds werestudied using fluorescence microscopy. The injection of DL-tryptophanand 5-hydroxytryptophan (5-HTp) resulted in an increase in thecells' fluorescence intensity and in the number of cells inthe taste bud. Pyromycin, in doses not affecting the taste budstructure, prevented the tryptophan-induced increase in thenumber of fluorescent cells. The participation of specific proteinsin the mechanism underlying this phenomenon is suggested.  相似文献   

5.
Grant J 《PloS one》2012,7(2):e31697
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+)-imaging on isolated taste cells, it was observed that SP induces Ca(2+) -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+)-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+)-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+)-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+) responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.  相似文献   

6.
Type III IP3 receptor (IP3R3) is one of the common critical calcium-signaling molecules for sweet, umami, and bitter signal transduction in taste cells, and the total IP3R3-expressing cell population represents all cells mediating these taste modalities in the taste buds. Although gustducin, a taste cell-specific G-protein, is also involved in sweet, umami, and bitter signal transduction, the expression of gustducin is restricted to different subsets of IP3R3-expressing cells by location in the tongue. Based on the expression patterns of gustducin and taste receptors in the tongue, the function of gustducin has been implicated primarily in bitter taste in the circumvallate (CV) papillae and in sweet taste in the fungiform (FF) papillae. However, in the soft palate (SP), the expression pattern of gustducin remains unclear and little is known about its function. In the present paper, the expression patterns of gustducin and IP3R3 in taste buds of the SP and tongue papillae in the rat were examined by double-color whole-mount immunohistochemistry. Gustducin was expressed in almost all (96.7%) IP3R3-expressing cells in taste buds of the SP, whereas gustducin-positive cells were 42.4% and 60.1% of IP3R3-expressing cells in FF and CV, respectively. Our data suggest that gustducin is involved in signal transduction of all the tastes of sweet, umami, and bitter in the SP, in contrast to its limited function in the tongue.  相似文献   

7.
We utilized the fluorescent serotonin analogue 5,7-dihydroxytryptamine (5,7DHT) to visualize basal cells in the frog's taste organ in supravital conditions. In whole mounts of lingual mucosa, specifical and detailed morphological visualization of fluorescent basal cells was obtained in the peripheral and central region of the intact taste organ; similar results were obtained after mechanical dissociation. Preincubation with serotonin prevented any fluorescence in basal cells. Electron microscopy showed good preservation of the ultrastructural morphology of the taste disk after exposure to 5,7DHT. The advantages of the current method as compared with conventional ones are discussed. This simple, reliable procedure will be useful to further define the biology of neuroendocrine cells in taste as well as in other organs.  相似文献   

8.
Serotonin and the 5HT(1A) receptor are expressed in a subset of taste receptor cells, and the 5HT(3) receptor is expressed on afferent fibers innervating taste buds. Exogenous administration of the selective serotonin reuptake inhibitor, paroxetine, has been shown to increase taste sensitivity to stimuli described by humans as sweet and bitter. Serotonergic agonists also decrease food and fluid intake, and it is possible that modulations of serotonin may alter taste-based hedonic responsiveness; alternatively, or in combination, serotonin may interact with physiological state to impact ingestive behavior. In this study, the unconditioned licking of prototypical taste stimuli by rats in brief-access taste tests was assessed following paroxetine administration (0.3-10 mg/kg intraperitoneal). We also measured sucrose licking by rats in different deprivation states after paroxetine (5 mg/kg). In neither experiment did we find any evidence of an effect of paroxetine on licking relative to water to any of the taste stimuli in the brief-access test at doses that decreased food intake. However, in some conditions, paroxetine decreased trials initiated to tastants. Therefore, a systemic increase in serotonin via paroxetine administration can decrease appetitive behavior in brief-access tests but is insufficient to alter taste-guided consummatory behavior.  相似文献   

9.
We find that substance P (SP) and insulin-like growth factor-1 (IGF-1) demonstrate a synergistic effect on the stimulation of rabbit corneal epithelial migration in an organ culture. The addition of either SP or IGF-1 alone did not affect epithelial migration, while the combination of SP and IGF-1 stimulated epithelial migration in a dose-dependent fashion. The synergistic effects of SP and IGF-1 on corneal epithelial migration were nulled by the addition of a SP antagonist or enkephalinase. Among neurotransmitters (vasoactive intestinal peptide, calcitonin gene-related peptide, acethylcholine chloride, norepinephrine, serotonin) or tachykinins (neurokinin A, neurokinin B, kassinin, eledoisin, physalaemin), only SP demonstrated a synergistic effect with IGF-1 on cellular migration. In contrast, the combination of SP and IGF-1 did not affect the incorporation of 3H-thymidine into corneal epithelial cells. The attachment of the corneal epithelial cells to fibronectin, collagen type IV, and laminin matrices increased after treatment of the cells with SP and IGF-1, but SP or IGF-1 by themselves did not affect the attachment of the cells to these extracellular matrix proteins. An identical synergistic effect on corneal epithelial migration was observed when an NK-1 receptor agonist was used in place of SP, suggesting the synergistic effect of SP and IGF-1 might be mediated through the NK-1 receptor system. These results suggest that the maintenance of the normal integrity of the corneal epithelium might be regulated by both humoral and neural factors. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
An attempt was made to identify specific monoamines contained in the dumb-bell shape cells of the frog taste bud by means of histochemical analysis. It was shown by fluorescent microscopy that preliminary administration of exogenous serotonin into the blood channel of frog tongue resulted in a sharp increase of specific fluorescence of the dumb-bell shape cells, whereas serotonin synthesis inhibition with p-chlorphenylalanine led to reduction and elimination of specific fluorescence. It was concluded that-specific monoamine of the dumb-bell shape cells was possibly of serotonin-like nature.  相似文献   

12.
Alteration in the number of taste buds on the soft palate (SP), fungiform (FF), foliate (FL) and circumvallate (CV) papillae in the common marmoset at different postnatal ages was examined histologically. After paraffin embedding, complete serial sections at 10 microm thickness were made and stained by HE. Digitized images for each section were examined carefully. The number of FF taste buds at day 1 was 334. While only 20% of all the taste buds at birth possessed a taste pore, 39% of 174 SP taste buds at day 1 possessed a taste pore. The number of taste buds with pores at day 1 was small for the center CV (19 of 59), one side CV (7 of 25), and one side FL (2 of 16). These results suggest that the functional maturation of SP taste buds may precede maturation in other areas of the tongue. The total number of taste buds increased with increasing age, reached a maximum at 2 months of age: FF, 1069; SP, 609; CV-center, 530; CV-side, 390; FL, 201, and decreased thereafter. Almost all taste buds possessed a taste pore after 2 months of age. The decrease in the number of taste buds in the oral cavity with increase in age may change taste sensitivity.  相似文献   

13.
In order to identify the intracellular transmitter involved in the taste transduction process, cyclic nucleotides were iontophoretically injected into the frog taste cells while membrane potentials were recorded intracellularly. Injection of either cyclic GMP or cyclic AMP induced a depolarization response of about 5 mV in the taste cells, but injection of Cl- had no effect. The rate of a repolarization after the depolarization elicited by cyclic GMP was larger than that after cyclic AMP. The possible role of cyclic nucleotide in the taste transduction was discussed.  相似文献   

14.
O Nada  K Hirata 《Histochemistry》1976,50(2):111-117
The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with alpha-MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla. From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   

15.
K Morimoto  M Sato 《Life sciences》1977,21(11):1685-1695
By artificially perfusing the frog tongue with serotonin (5HT) and its antagonists, the possibility of 5HT as a chemical transmitter from taste cells to nerve terminals in frog taste organ was examined. Although serotonin creatinine sulfate, when perfused through the lingual artery, produced impulse discharges in the glossopharyngeal nerve, creatinine sulfate elicited a similar response. Neural responses to taste stimuli were depressed by perfusion with 5HT. Among many antiserotonergic drugs perfused through the lingual artery, LSD was the only one which modified responses to taste stimuli. LSD suppressed taste responses to NaCl, CaCl2 and water, while LSD at a high concentration (10?5 g/ml) enhanced responses to guinine and HCl. When PCPA (DL-p-chlorophenylalanine) was injected intraperitoneally in conbination with reserpine, the agent did not significantly change taste responses. The above results possibly suggest that 5HT would not be a chemical mediator from taste cells to nerve terminals.  相似文献   

16.
Gustatory papillae and associated taste buds receive and process chemical information from the environment. In mammals, their development takes place during the late phase of embryogenesis. However, the cellular factors that regulate the differentiation of taste papillae remain largely unknown. Here, we show by quantitative real time RT-PCR that both isoforms of tryptophan hydroxylase (TPH1 and TPH2), the first and rate limiting enzyme of serotonin (5-HT) synthesis, are expressed in developing circumvallate papillae. Immuno-staining experiments further indicated that TPH is localized both in gustatory fibers and in differentiated taste receptor cells. These results point to the synthesis of 5-HT in gustatory papillae, and allow one to hypothesize that the development of taste buds might be modulated by serotonin.  相似文献   

17.
CHO cells transfected with high-affinity 5HT receptors were used to detect and identify the release of serotonin from taste buds. Taste cells release 5HT when depolarized or when stimulated with bitter, sweet, or sour tastants. Sour- and depolarization-evoked release of 5HT from taste buds is triggered by Ca2+ influx from the extracellular fluid. In contrast, bitter- and sweet-evoked release of 5HT is triggered by Ca2+ derived from intracellular stores.  相似文献   

18.
Villin is a possible marker of receptor cells in frog taste organs   总被引:1,自引:1,他引:0  
We investigated lingual taste organs of four frog species mainly by means of fluorescence immunohistochemistry for villin, calbindin, and serotonin. Cells immunoreactive for villin appeared in the taste organs of all the species used. These villin-immunostained cells were basoapically elongated in shape and extended up to the apical surface. They were also immunoreactive for calbindin. On the other hand, serotonin-immunoreactive cells, identified as Merkel-like basal cells, were immunonegative for villin. Considering the present results combined with those of studies by other research groups, the villin-immunostained cells were postulated to function as taste receptors.  相似文献   

19.
Summary The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with -MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla.From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   

20.
Recently we reported that rat taste receptor cells respond to the neurotransmitter serotonin with an inhibition of a calcium-activated potassium current [17]. In the present study, this observation is confirmed and extended by studying the effects of an array of serotonergic agonists on membrane properties, calcium-activated potassium current, and voltage-dependent sodium current in taste receptor cells using the patch-clamp recording technique in the whole-cell configuration. Serotonergic inhibition of calcium-activated potassium current was mimicked by the agonists N-(3-trifluoromethylphenyl)piperazine and by (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene. Both produced reversible inhibition of K Ca as well as significantly increasing the input resistance of the cell. The agonists 1-(1-naphthyl)piperazine and buspirone (both serotonin receptor 1A agonists) were similarly effective in reducing K Ca . Outward current was unaffected by application of phenylbiguanide, a serotonin receptor 3 agonist, though current was affected by subsequent application of (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene. Two agonists—N-(3-trifluoromethylphenyl)piperazine and (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene—were also tested on voltage-dependent sodium currents; both were effective and reversible in reducing its magnitude at a variety of applied potentials. These data are consistent with the notion that serotonin effects in rat taste receptor cells are mediated by serotonin 1A receptors, though other receptor subtypes may be additionally expressed. Serotonin may affect the taste cell electrical properties during active stimulation in a paracrine fashion. Received: 10 May 1999/Revised: 27 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号