首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of thrS, the gene encoding Escherichia coli threonyl-tRNA synthetase, is negatively autoregulated at the translational level. Regulation is due to the binding of threonyl-tRNA synthetase to its own mRNA at a site called the operator, located immediately upstream of the initiation codon. The present work investigates the relationship between regulation and mRNA degradation. We show that two regulatory mutations, which increase thrS expression, cause an increase in the steady-state mRNA concentration. Unexpectedly, however, the half-life of thrS mRNA in the derepressed mutants is equal to that of the wild-type, indicating that mRNA stability is independent of the repression level. All our results can be explained if one assumes that thrS mRNA is either fully translated or immediately degraded. The immediately degraded RNAs are never detected due to their extremely short half-lives, while the fully translated messengers share the same half-lives, irrespective of the mutations. The increase in the steady-state level of thrS mRNA in the derepressed mutants is simply explained by an increase in the population of translated molecules, i.e. those never bound by the repressor, ThrRS. Despite this peculiarity, thrS mRNA degradation seems to follow the classical degradation pathway. Its stability is increased in a strain defective for RNase E, indicating that an endonucleolytic cleavage by this enzyme is the rate-limiting process in degradation. We also observe an accumulation of small fragments corresponding to the 5' end of the message in a strain defective for polynucleotide phosphorylase, indicating that, following the endonucleolytic cleavages, fragments are normally degraded by 3' to 5' exonucleolytic trimming. Although mRNA degradation was suspected to increase the efficiency of translational control based on several considerations, our results indicate that inhibition of mRNA degradation has no effect on the level of repression by ThrRS.  相似文献   

2.
3.
Ribonucleotide reductase is a highly regulated enzyme that provides the four deoxyribonucleotides required for DNA synthesis. Our studies showed that TGF-beta 1 treatment of BALB/c 3T3 mouse fibroblasts markedly elevated ribonucleotide reductase R2 mRNA levels, and also increased the half-life of R2 message by 4-fold from 1.5 h in untreated cells to 6 h in treated cells. We describe a novel 75 Kd sequence-specific cytoplasmic factor (p75) that binds selectively to a 83-nucleotide 3'-untranslated region of R2 mRNA and did not bind to the 5'UTR, the coding region of the R2 message or to the 3'UTRs of other mRNAs (from c-myc, GM-CSF and the iron responsive element from the transferrin receptor mRNA), or to the homopolymer poly(A) sequence. p75-RNA binding activity, which requires new protein synthesis, is not present in untreated cells, but is induced following TGF-beta 1 stimulation. The in vivo kinetics of appearance of p75 binding activity paralleled the accumulation of R2 mRNA. Insertion of the 3'-untranslated region into the chloramphenicol acetyltransferase (CAT) message confers TGF-beta 1 induced stability of RNA in stably transfected cells, while the same insert carrying a deletion of the 83-nucleotide fragment had little affect on RNA levels. Furthermore, in vitro decay reactions that contained the 83-nucleotide RNA or deletion of this fragment caused a significant decrease in TGF-beta 1 stabilization of R2 message. A model is presented of R2 message regulation in which TGF-beta 1 mediated stabilization of R2 message involves a specific interaction of a p75-trans-acting factor with a cis-element(s) stability determinant within the 83-nucleotide sequence which is linked to a reduction in the rate of R2 mRNA degradation.  相似文献   

4.
R Petersen  S Lindquist 《Gene》1988,72(1-2):161-168
When heat-shocked Drosophila cells are returned to normal temperatures, heat-shock protein (HSP) synthesis is repressed and normal protein synthesis is restored. The repression of HSP70 synthesis is accompanied by the selective degradation of its mRNA. We have engineered cells to produce a modified hsp70 mRNA that behaves exactly as the wild-type message. That is, it is stable during heat shock but degraded during recovery when protein synthesis returns to normal. When this message, placed under the control of the metallothionein promoter, is induced at normal temperatures it is rapidly degraded, with a half life of 15-30 min. Apparently, the hsp70 message is inherently unstable. During heat-shock, degradation of the message is suspended; during recovery degradation is restored.  相似文献   

5.
6.
The mechanism of E. coli chloramphenicol acetyltransferase (cat) mRNA decay was investigated. Alteration of the 5' untranslated terminus does not appear to have an effect on the turnover rate of the mRNA. Similarly, changes at the 3' terminus of the message, including the addition of a stable stem and loop structure, do not affect the half-life of the message. The data suggest that 5' and 3' terminal untranslated sequences do not contain the rate-limiting determinants for cat message decay. Decay rates for various segments of the cat mRNA were measured and indicate that all regions of the message have similar stabilities. The current model of cat mRNA degradation involves a rate-limiting endonucleolytic decay event that occurs internal to the message followed by degradation of the cleavage products.  相似文献   

7.
Stabilization of translationally active mRNA by prokaryotic REP sequences   总被引:79,自引:0,他引:79  
  相似文献   

8.
9.
10.
11.
mRNA decay is a major determinant of gene expression. In Escherichia coli, message degradation initiates with an endoribonucleolytic cleavage followed by exoribonuclease digestion to generate 5'-mononucleotides. Although the 3' to 5' processive exoribonucleases, PNPase and RNase II, have long been considered to be mediators of this digestion, we show here that another enzyme, RNase R, also participates in the process. RNase R is particularly important for removing mRNA fragments with extensive secondary structure, such as those derived from the many mRNAs that contain REP elements. In the absence of RNase R and PNPase, REP-containing fragments accumulate to high levels. RNase R is unusual among exoribonucleases in that, by itself, it can digest through extensive secondary structure provided that a single-stranded binding region, such as a poly(A) tail, is present. These data demonstrate that RNase R, which is widespread in prokaryotes and eukaryotes, is an important participant in mRNA decay.  相似文献   

12.
13.
mRNA degradation in bacteria   总被引:26,自引:0,他引:26  
Messenger RNAs in prokaryotes exhibit short half-lives when compared with eukaryotic mRNAs. Considerable progress has been made during recent years in our understanding of mRNA degradation in bacteria. Two major aspects determine the life span of a messenger in the bacterial cell. On the side of the substrate, the structural features of mRNA have a profound influence on the stability of the molecule. On the other hand, there is the degradative machinery. Progress in the biochemical characterization of proteins involved in mRNA degradation has made clear that RNA degradation is a highly organized cellular process in which several protein components, and not only nucleases, are involved. In Escherichia coli, these proteins are organized in a high molecular mass complex, the degradosome. The key enzyme for initial events in mRNA degradation and for the assembly of the degradosome is endoribonuclease E. We discuss the identified components of the degradosome and its mode of action. Since research in mRNA degradation suffers from dominance of E. coli-related observations we also look to other organisms to ask whether they could possibly follow the E. coli standard model.  相似文献   

14.
Summary Degradation of messenger RNA from the lactose operon (lac mRNA) was measured during the inhibition of protein synthesis by chloramphenicol (CM) or of translation-initiation by kasugamycin (KAS). With increasing CM concentration mRNA decay becomes slower, but there is no direct proportionality between rates of chemical decay and polypeptide synthesis. During exponential growth lac mRNA is cleaved endonucleolytically (Blundell and Kennell, 1974). At a CM concentration which completely inhibits all polypeptide synthesis this cleavage is blocked. In contrast, if only the initiation of translation is blocked by addition of KAS, the cleavage rate as well as the rate of chemical decay are increased significantly without delay. These faster rates do not result from immediate degradation of the lengthening stretch of ribosome-free proximal message, since the full-length size is present and the same discrete message sizes are generated during inhibition.These results suggest that neither ribosomes nor translation play an active role in the degradative process. Rather, targets can be protected by the proximity of a ribosome, and without nearby ribosomes the probability of cleavage becomes very high. During normal growth there is a certain probability that any message is in such a vulnerable state, and the fraction of vulnerable molecules determines the inactivation rate of that species.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号