首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-lasting postsynaptic potentials (PSPs) generated by decreases in membrane conductance (permeability) have been reported in many types of neurons. We investigated the possible role of such long-lasting decreases in membrane conductance in the modulation of synaptic transmission in the sympathetic ganglion of the bullfrog. The molecular basis by which such conductance-decrease PSPs are generated was also investigated. Synaptic activation of muscarinic cholinergic receptors on these sympathetic neurons results in the generation of a slow EPSP (excitatory postsynaptic potential), which is accompanied by a decrease in membrane conductance. We found that the conventional "fast" EPSPs were increased in amplitude and duration during the iontophoretic application of methacholine, which activates the muscarinic postsynaptic receptors. A similar result was obtained when a noncholinergic conductance-decrease PSP--the late-slow EPSP--was elicited by stimulation of a separate synaptic pathway. The enhancement of fast EPSP amplitude increased the probability of postsynaptic action potential generation, thus increasing the efficacy of impulse transmission across the synapse. Stimulation of one synaptic pathway is therefore capable of increasing the efficacy of synaptic transmission in a second synaptic pathway by a postsynaptic mechanism. Furthermore, this enhancement of synaptic efficacy is long-lasting by virtue of the long duration of the slow PSP. Biochemical and electrophysiological techniques were used to investigate whether cyclic nucleotides are intracellular second messengers mediating the membrane permeability changes underlying slow-PSP generation. Stimulation of the synaptic inputs, which lead to the generation of the slow-PSPs, increased the ganglionic content of both cyclic AMP and cyclic GMP. However, electrophysiological analysis of the actions of these cyclic nucleotides and the actions of agents that affect their metabolism does not provide support for such a second messenger role for either cyclic nucleotide.  相似文献   

2.
Neurons in vesical parasympathetic ganglia receive excitatory and inhibitory inputs from both divisions of the autonomic nervous system. Sacral parasympathetic pathways (cholinergic) provide the major excitatory input to these ganglia via activation of nicotinic receptors. Parasympathetic pathways also activate muscarinic inhibitory and excitatory receptors, which may exert a modulatory influence on transmission. Cholinergic transmission is relatively inefficient when preganglionic nerves are stimulated at low frequencies (< 1 Hz). However, excitatory postsynaptic potentials (EPSPs) and postganglionic firing markedly increase during repetitive stimulation at frequencies of 1-10 Hz. It is concluded that enhanced transmitter release accounts for the temporal facilitation and that vesical ganglia function as "high pass filters" that amplify the parasympathetic excitatory input to the detrusor muscle during micturition. Transmission in vesical ganglia is also sensitive to adrenergic inhibitory and facilitatory synaptic mechanisms elicited by efferent pathways in the hypogastric nerves. The effects of exogenous norepinephrine indicate that adrenergic inhibition is mediated by alpha receptors and reflects primarily a presynaptic depression of transmitter release although postsynaptic adrenergic hyperpolarizing and depolarizing effects have also been noted. Adrenergic facilitation is mediated by beta receptors as well as unidentified receptors. Norepinephrine also can inhibit or excite spontaneously active neurons in vesical ganglia. The existence of inhibitory and facilitatory synaptic mechanisms in vesical ganglia provides the basis for a complex ganglionic modulation of the central autonomic outflow to the bladder.  相似文献   

3.
B Libet 《Life sciences》1979,24(12):1043-1057
The experimental basis, for proposals that adenosine 3' ,5'-cyclic monophosphate (cAMP) acts as intracellular mediator of one or the other postsynaptic actions of dopamine (DA) in mammalian sympathetic ganglia, is analyzed. These synaptic actions of DA are (I) a hyperpolarizing one, as the direct transmitter for the slow-inhibitory postsynaptic potential (s-IPSP); and (II) a modulatory one, inducing an enduring enhancement of the slow-excitatory postsynaptic response (s-EPSP) to another transmitter, acetylcholine (ACh).(A) Stimulation of adenyl cyclase by DA or appropriate neural input appears generally to support either role; however, the comparative characteristics of DA and norepinephrine (NE) in relation to adenyl cyclase do not appear to be in accord with those in relation to hyperpolarizing actions. (B) Postsynaptic actions of cAMP do not support a role in DA action-I, but they are fully appropriate for DA action-II. (C) Phosphodiesterase inhibition by the relatively potent and selective agent RO-20-1724, under conditions reported to protect and increase cAMP in these ganglia, is shown not to augment the s-IPSP or DA-hyperpolarization; although theophylline does augment these responses, this effect is shown not to be attributable to an inhibition of phosphodiesterase, and it does not provide support for a role in DA action-I. Effects of these inhibitors are at least compatible with the proposed modulatory role-II for cAMP. (D) The timing of the putative chemical reactions involved in a mediation by cAMP would appear to be far too slow for the purposes of DA action-I (s-IPSP response), but it is readily accommodated by the slow onset and development of the modulatory change induced by DA action-II.The suggestion that guanosine 3', 5'-cyclic monophosphate (cGMP) may mediate the slow muscarinic depolarizing response to ACh (s-EPSP) has gained definitive experimental support. Suitable cholinergic stimulation of guanyl cyclase has been demonstrated. The postsynaptic action of cGMP in a low concentration range fits with the unique characteristics of the s-EPSP, at least for cells with normal, not already depolarized, resting membrane potentials. cGMP has also been found capable of antagonizing the modulatory action of either DA (action-II) or of cAMP, but only in a remarkably time-dependent manner.It is concluded that cAMP does not mediate the inhibitory synaptic DA action-I (s-IPSP response), but that it probably does mediate the enduring modulatory change in the s-EPSP (DA action-II). cGMP probably does mediate the production of the s-EPSP by ACh. cAMP would thus have a synergistic, rather than opposing, physiological action in relation to cGMP. A re-examination of the functional significance of related DA-activated adenyl cyclase systems in the brain is suggested.  相似文献   

4.
The synapses of the rat superior cervical sympathetic ganglion were studied with both conventional and ultrastructural histochemical methods. Besides the cholinergic synapses polarized from preganglionic fibers to sympathetic ganglion neurons, two morphologically and functionally different types of synapses were observed in relation to the small granule-containing (catecholamine-containing) cells of the rat superior cervical ganglion. The first type is an efferent adrenergic synapse polarized from granule-containing cells to the dendrites of the sympathetic ganglion neurons. This type of synapse might mediate the inhibitory effects (slow inhibitory postsynaptic potentials) induced by catecholamines on the sympathetic neurons. The second type is a reciprocal type of synapse between the granule-containing cells and the cholinergic preganglionic fibers. Through such synapses, these cells could exert a modulating effect on the excitatory preganglionic fibers. Therefore, we propose that these cells, through their multiple synaptic connections, exhibit a local modulatory feedback system in the rat sympathetic ganglia and may serve as interneurons between the preganglionic and postganglionic sympathetic neurons.  相似文献   

5.
The effects of beta-agkistrodotoxin (beta-AgTX) on synaptic transmission of the toad sympathetic ganglia were investigated by intracellular recording techniques. Superfusion of beta-AgTX (30 microgram/ml, 5-15 min) reversibly inhibited the cholinergic fast excitatory postsynaptic potential (f-EPSP, n = 16) and the fast components of acetylcholine (ACh) potential induced by micropressure administration of ACh (n = 24). Comparison of beta-AgTX effect in the same cell group showed significantly different inhibition rates on f-EPSP (77.2 +/- 27.7%) and ACh potential (25.5 +/- 17.5%) (n = 6, P less than 0.01, F test). During application of beta-AgTX (30 or 50 micrograms/ml) for 15-30 min, no detectable change was found in non-cholinergic late slow EPSPs (n = 22). The results suggest that beta-AgTX selectively inhibits the cholinergic transmission of the toad sympathetic ganglia by both presynaptic and postsynaptic mechanism.  相似文献   

6.
Chemical synapses are key organelles for neurotransmission. The coordinated actions of protein networks in diverse synaptic subdomains drive the sequential molecular events of transmitter release from the presynaptic bouton, activation of transmitter receptors located in the postsynaptic density and the changes of postsynaptic potential. Plastic change of synaptic efficacy is thought to be caused by the alteration of protein constituents and their interaction in the synapse. As a first step toward the understanding of the organization of synapse, several proteomics studies have been carried out to profile the protein constituents and the post-translational modifications in various rodent excitatory chemical synaptic subdomains, including postsynaptic density, synaptic vesicle and the synaptic phosphoproteome. Quantitative proteomics have been applied to examine the changes of synaptic proteins during brain development, in knockout mice model developed for studies of synapse physiology and in rodent models of brain disorders. These analyses generate testable hypotheses of synapse function and regulation both in health and disease.  相似文献   

7.
Chemical synapses are key organelles for neurotransmission. The coordinated actions of protein networks in diverse synaptic subdomains drive the sequential molecular events of transmitter release from the presynaptic bouton, activation of transmitter receptors located in the postsynaptic density and the changes of postsynaptic potential. Plastic change of synaptic efficacy is thought to be caused by the alteration of protein constituents and their interaction in the synapse. As a first step toward the understanding of the organization of synapse, several proteomics studies have been carried out to profile the protein constituents and the post-translational modifications in various rodent excitatory chemical synaptic subdomains, including postsynaptic density, synaptic vesicle and the synaptic phosphoproteome. Quantitative proteomics have been applied to examine the changes of synaptic proteins during brain development, in knockout mice model developed for studies of synapse physiology and in rodent models of brain disorders. These analyses generate testable hypotheses of synapse function and regulation both in health and disease.  相似文献   

8.
Stimulation of various peripheral nerve trunks evokes very similar compound postsynaptic potentials (PSP) composed of one or more excitatory postsynaptic potentials (EPSP) followed by fast and slow inhibitory postsynaptic potentials (IPSP) on the identified RPal neuron of Helix pomatia L. Evoked EPSPs were reduced or blocked by nicotine, atropine and d-tubocurarine. The two components of IPSP were different in their pharmacological sensitivity. Slow IPSP was partly or totally eliminated by ergometrine and chlorpromazine and was reduced by atropine, nicotine as well as by propranolol. Fast IPSP was reduced only in the presence of ergometrine and could not be blocked by either of the applied drugs. Participation of cholinergic transmission seems to be essential in the evoked EPSP but its partial involvement in the slow IPSP can also be supposed. A dopaminergic mechanism may take part in the generation of both components of IPSP but the receptors responsible for the slow IPSP were sensitive to other catecholamine antagonists as well, referring to a more complex origin, or to the involvement of an unknown transmitter. Comparison of PSPs evoked by stimulation of different nerves shows that presynaptic areas belonging to various peripheral sources are overlapped on the RPal neuron, and they probably act by similar transmitter substances.  相似文献   

9.
Y N Jan  L Y Jan 《Federation proceedings》1983,42(12):2929-2933
Both acetylcholine (ACh) and a peptide that resembles luteinizing hormone-releasing hormone (LHRH) serve as transmitters in sympathetic ganglia of the bullfrog. Although ACh is contained and released from both preganglionic B fibers, which form synaptic contacts with only B cells in the ganglia, and preganglionic C fibers, which are in synaptic contact with C cells only, the LHRH-like peptide is contained and released exclusively from preganglionic C fibers. The same preganglionic C fibers appear to supply both ACh and the LHRH-like peptide because the thresholds for the cholinergic fast excitatory postsynaptic potential (EPSP) correlate well with the thresholds for the peptidergic late slow EPSP recorded in the same C cell. Further, anatomical studies showed that almost all nerve terminals on C cells contained the LHRH-like peptide. Some of these same terminals must also contain and release. ACh, mediating the cholinergic fast EPSPs with millisecond synaptic delays. Therefore at least some, if not all, terminals of preganglionic C fibers contain and release both cholinergic and peptidergic transmitters.  相似文献   

10.
The sympathetic and enteric divisions of the autonomic nervous system are interactive in the determination of the functional state of the digestive tract. Activation of the sympathetic input suppresses digestive function primarily through release of norepinephrine at its synaptic interface with the enteric nervous system. The enteric nervous system functions like an independent minibrain in the initiation of the various programmed patterns of digestive tract behavior and moment-to-moment control as the neural microcircuits carry-out the behavioral patterns. Most of the postganglionic projections from sympathetic prevertebral ganglia terminate as synapses in myenteric and submucous ganglia of the enteric nervous system. Two primary actions of the sympathetic input are responsible for suppression of motility and secretion. First is presynaptic inhibitory action of norepinephrine to suppress release of neurotransmitters at fast and slow excitatory synapses in the enteric neural microcircuits and this effectively shuts-down the circuit. Second is inhibitory synaptic input to submucosal secretomotor neurons to the intestinal crypts. The alpha, adrenergic receptor subtype mediates both actions. Axons of secretomotor neurons to the crypts bifurcate to innervate and dilate the submucosal vasculature. Dilitation of the vasculature increases blood flow in support of increased secretion. Sympathetic inhibitory input to the secretomotor neurons therefore suppresses both secretion and blood flow. Activation of the sympathetic nervous system cannot explain the symptoms of secretory diarrhea and abdominal discomfort associated with psychologic and other forms of stress. Current evidence suggests that brain to mast cell connections account for stress-induced gastrointestinal symptoms. Degranulation of enteric mast cells by neural inputs releases inflammatory mediators that enhance excitability of intestinal secretomotor neurons while suppressing the release of norepinephrine from postganglionic sympathetic axons. This is postulated to underlie the secretory diarrhea and abdominal discomfort associated with stress.  相似文献   

11.
Final motor neurons in sympathetic and parasympathetic ganglia receive synaptic inputs from preganglionic neurons. Quantitative ultrastructural analyses have shown that the spatial distribution of these synapses is mostly sparse and random. Typically, only about 1%-2% of the neuronal surface is covered with synapses, with the rest of the neuronal surface being closely enclosed by Schwann cell processes. The number of synaptic inputs is correlated with the dendritic complexity of the target neuron, and the total number of synaptic contacts is related to the surface area of the post-synaptic neuron. Overall, most neurons receive fewer than 150 synaptic contacts, with individual preganglionic inputs providing between 10 and 50 synaptic contacts. This variation is probably one determinant of synaptic strength in autonomic ganglia. Many neurons in prevertebral sympathetic ganglia receive additional convergent synaptic inputs from intestinofugal neurons located in the enteric plexuses. The neurons support these additional inputs via larger dendritic arborisations together with a higher overall synaptic density. There is considerable neurochemical heterogeneity in presynaptic boutons. Some synapses apparently lack most of the proteins normally required for fast transmitter release and probably do not take part in conventional ganglionic transmission. Furthermore, most preganglionic boutons in the ganglionic neuropil do not form direct synaptic contacts with any neurons. Nevertheless, these boutons may well contribute to slow transmission processes that need not require conventional synaptic structures.  相似文献   

12.
The miniature excitatory postsynaptic currents (MEPCs) of the muscle cells of the earthworm Lumbricus terrestris were recorded by glass microelectrodes. In a single synaptic zone, three types of MEPC were recorded: a fast single-exponential type that decayed with tau =0.9 ms, a slow single-exponential with tau = 9.2 ms and a two-exponential MEPC with tau = 1.3 and 8.5 ms, respectively. The muscle cells of earthworms contain populations of yet-unidentified ionic channels that might be different from the common nicotinic and muscarinic groups of acetylcholine receptors, since these MEPCs are not sensitive to d-tubocurarine, atropine, benzohexonium or proserine. Alternatively, besides ACh receptors, the membrane may contain receptors for another yet-unidentified excitatory transmitter.  相似文献   

13.
Neurochemical transmission in the dorsal column nuclei   总被引:1,自引:0,他引:1  
The transmitter chemistry of the dorsal column nuclei is reviewed, with special emphasis on the monosynaptic component of the dorsal column-medial lemniscal pathway. It is maintained that in this anatomically addressed system concerned mainly with fast, secure sensory transmission, amino acids represent the predominant mechanism used for chemical relay of primary afferent impulses. The major excitatory primary afferent transmitter is most likely glutamic acid, whereas gamma-aminobutyric acid (GABA) fulfills adequately the role of transmitter of recurrent, postsynaptic and presynaptic inhibition. Recent immunohistochemical and physiological evidence indicates that 5-hydroxytryptamine, originating mainly from neurons of the raphé nuclei, plays a modulatory role in dorsal column transmission of innocuous sensory information. The basic synaptic elements involved in transmission across this relay, along with their corresponding chemical identities, are presented in the form of a speculative model.  相似文献   

14.
15.
The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long-term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical form of presynaptic LTP. We synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large transient of zinc in the synaptic cleft induced by mf stimulation. We found that vesicular zinc is required for presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits?a form of postsynaptic mf-LTP. Because the mf-CA3 synapse provides a major source of excitatory input to the hippocampus, regulating its efficacy by these dual actions, vesicular zinc is critical to proper function of hippocampal circuitry in health and disease.  相似文献   

16.
The effects of endogenous mu-opioid ligands, endomorphins, on Adelta-afferent-evoked excitatory postsynaptic currents (EPSCs) were studied in substantia gelatinosa neurons in spinal cord slices. Under voltage-clamp conditions, endomorphins blocked the evoked EPSCs in a dose-dependent manner. To determine if the block resulted from changes in transmitter release from glutamatergic synaptic terminals, the opioid actions on miniature excitatory postsynaptic currents (mEPSCs) were examined. Endomorphins (1 microM) reduced the frequency but not the amplitude of mEPSCs, suggesting that endomorphins directly act on presynaptic terminals. The effects of endomorphins on the unitary (quantal) properties of the evoked EPSCs were also studied. Endomorphins reduced unitary content without significantly changing unitary amplitude. These results suggest that in addition to presynaptic actions on interneurons, endomorphins also inhibit evoked EPSCs by reducing transmitter release from Adelta-afferent terminals.  相似文献   

17.
18.
Pyramidal cells form excitatory synaptic connections with local inhibitory neurons in the hippocampus. This recurrent synapse plays a crucial stabilizing role in the control of hippocampal activity, since it transforms pyramidal cell population. Using a combination of dual recording from presynaptic and postsynaptic cells and anatomical techniques, we show that these synaptic connections often comprise a single site for liberation of excitatory transmitter. The resulting excitatory postsynaptic potentials (EPSCs) have a fast time course and a similar amplitude to miniature EPSCs recorded in tetrodotoxin and cobalt. In contrast, activation of metabotropic glutamate receptors (mGluRs) by transmitter liberated during repetitive activation of these synapses produces an excitation with a much slower time course. In addition to somatodendritic mGluRs, which excite inhibitory cells, a different species of mGluR is present on inhibitory cell terminals. This mGluR is activated by higher concentrations of the agonist t-1-amino-cyclopentyl–1,3-decarboxylate and acts to reduce γ-aminobutyric acid release. mGluRs, thus, have a dual action to enhance and to depress synaptic inhibition in the hippocampus. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Calcitonin gene-related peptide-immunoreactive (CGRP-IR) nerves within guinea-pig peribronchial ganglia were studied at ultrastructural level using pre-embedding immunohistochemistry. Preterminal CGRP-IR axons were unmyelinated and contained singular immunoreactive dense core vesicles. CGRP-IR axon terminals were filled with numerous non-reactive small clear vesicles and few immunoreactive dense core vesicles. Some of these terminals were presynaptic to large neuronal processes emerging from local ganglion cells. Another population of presynaptic varicosities lack CGRP-IR. Within CGRP-IR terminals, non-reactive clear vesicles were clustered at the presynaptic membrane whereas CGRP-IR large vesicles remained in some distance from the synaptic cleft. The present observations indicate that: (1) at least two neurochemically different types of synaptic input exist to guinea-pig peribronchial ganglia. (2) CGRP-IR presynaptic terminals probably utilize a non-peptide transmitter for fast synaptic transmission, whilst the peptides are likely to be released parasynaptically and may act in a modulatory fashion.  相似文献   

20.
Actions of adenosine 5'-monophosphate (AMP) on electrical and synaptic behavior of submucosal neurons in guinea pig small intestine were studied with "sharp" intracellular microelectrodes. Application of AMP (0.3-100 microM) evoked slowly activating depolarizing responses associated with increased excitability in 80.5% of the neurons. The responses were concentration dependent with an EC(50) of 3.5 +/- 0.5 microM. They were abolished by the adenosine A(2A) receptor antagonist ZM-241385 but not by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid, trinitrophenyl-ATP, 8-cyclopentyl-1,3-dimethylxanthine, suramin, or MRS-12201220. The AMP-evoked responses were insensitive to AACOCF3 or ryanodine. They were reduced significantly by 1) U-73122, which is a phospholipase C inhibitor; 2) cyclopiazonic acid, which blocks the Ca(2+) pump in intraneuronal membranes; and 3) 2-aminoethoxy-diphenylborane, which is an inositol (1,4,5)-trisphosphate receptor antagonist. Inhibitors of PKC or calmodulin-dependent protein kinase also suppressed the AMP-evoked excitatory responses. Exposure to AMP suppressed fast nicotinic ionotropic postsynaptic potentials, slow metabotropic excitatory postsynaptic potentials, and slow noradrenergic inhibitory postsynaptic potentials in the submucosal plexus. Inhibition of each form of synaptic transmission reflected action at presynaptic inhibitory adenosine A(1) receptors. Slow excitatory postsynaptic potentials, which were mediated by the release of ATP and stimulation of P2Y(1) purinergic receptors in the submucosal plexus, were not suppressed by AMP. The results suggest an excitatory action of AMP at adenosine A(2A) receptors on neuronal cell bodies and presynaptic inhibitory actions mediated by adenosine A(1) receptors for most forms of neurotransmission in the submucosal plexus, with the exception of slow excitatory purinergic transmission mediated by the P2Y(1) receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号