首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cohesin complex plays a key role for the maintenance of sister chromatid cohesion and faithful chromosome segregation in both mitosis and meiosis. This complex is formed by two structural maintenance of chromosomes protein family (SMC) subunits and two non-SMC subunits: an α-kleisin subunit SCC1/RAD21/REC8 and an SCC3-like protein. Several studies carried out in different species have revealed that the distribution of the cohesin subunits along the chromosomes during meiotic prophase I is not regular and that some subunits are distinctly incorporated at different cell stages. However, the accurate distribution of the different cohesin subunits in condensed meiotic chromosomes is still controversial. Here, we describe the dynamics of the cohesin subunits SMC1α, SMC3, RAD21 and SA1 during both meiotic divisions in grasshoppers. Although these subunits show a similar patched labelling at the interchromatid domain of metaphase I bivalents, SMCs and non-SMCs subunits do not always colocalise. Indeed, SA1 is the only cohesin subunit accumulated at the centromeric region of all metaphase I chromosomes. Additionally, non-SMC subunits do not appear at the interchromatid domain in either single X or B chromosomes. These data suggest the existence of several cohesin complexes during metaphase I. The cohesin subunits analysed are released from chromosomes at the beginning of anaphase I, with the exception of SA1 which can be detected at the centromeres until telophase II. These observations indicate that the cohesin components may be differentially loaded and released from meiotic chromosomes during the first and second meiotic divisions. The roles of these cohesin complexes for the maintenance of chromosome structure and their involvement in homologous segregation at first meiotic division are proposed and discussed.  相似文献   

2.
The evolutionarily conserved cohesin complex is required for the establishment and maintenance of sister chromatid cohesion, in turn essential for proper chromosome segregation. RAD21/SCC1 is a regulatory subunit of the mitotic cohesin complex, as it links together all other subunits of the complex. The destruction of RAD21/SCC1 along chromosomal arms and later at centromeres results in the dissociation of the cohesin complex, facilitating chromosome segregation. Here, we report for the first time that mammalian RAD21/SCC1 associates with the axial/lateral elements of the synaptonemal complex along chromosome arms and on centromeres of mouse spermatocytes. Importantly, RAD21/SCC1 is lost from chromosome arms in late prophase I but persists on centromeres. The loss of centromeric RAD21/SCC1 coincides with the separation of sister chromatids at anaphase II. These findings support a role for mammalian RAD21/SCC1 in maintaining sister chromatid cohesion in meiosis.  相似文献   

3.
STAG/SA proteins are specific cohesin complex subunits that maintain sister chromatid cohesion in mitosis and meiosis. Two members of this family, STAG1/SA1 and STAG2/SA2,double dagger are classified as mitotic cohesins, as they are found in human somatic cells and in Xenopus laevis as components of the cohesin(SA1) and cohesin(SA2) complexes, in which the shared subunits are Rad21/SCC1, SMC1 and SMC3 proteins. A recently reported third family member, STAG3, is germinal cell-specific and is a subunit of the meiotic cohesin complex. To date, the meiosis-specific cohesin complex has been considered to be responsible for sister chromatid cohesion during meiosis. We studied replacement of the mitotic by the meiotic cohesin complex during mouse germinal cell maturation, and we show that mammalian STAG2 and Rad21 are also involved in several meiosis stages. Immunofluorescence results suggest that a cohesin complex containing Rad21 and STAG2 cooperates with a STAG3-specific complex to maintain sister chromatid cohesion during the diplotene stage of meiosis.  相似文献   

4.
Cohesins, which have been characterized in budding yeast and Xenopus, are multisubunit protein complexes involved in sister chromatid cohesion. Regulation of the interactions among different cohesin subunits and the assembly/disassembly of the cohesin complex to chromatin are key steps in chromosome segregation. We previously characterized the mammalian STAG3 protein as a component of the synaptonemal complex that is specifically expressed in germinal cells, although its function in meiosis remains unknown. Here we show that STAG3 has a role in sister chromatid arm cohesion during mammalian meiosis I. Immunofluorescence results in prophase I cells suggest that STAG3 is a component of the axial/lateral element of the synaptonemal complex. In metaphase I, STAG3 is located at the interchromatid domain and is absent from the chiasma region. In late anaphase I and the later stages of meiosis, STAG3 is not detected. STAG3 interacts with the structural maintenance chromosome proteins SMC1 and SMC3, which have been reported to be subunits of the mitotic cohesin complex. We propose that STAG3 is a sister chromatid arm cohesin that is specific to mammalian meiosis I.  相似文献   

5.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

6.
The cohesin complex is a ring-shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its α-kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently identified α-kleisin that is present from fish to mammals and biochemically interacts with the cohesin subunits SMC1, SMC3 and STAG3. RAD21L localizes along the axial elements of the synaptonemal complex of mouse meiocytes. However, its existence as a bona fide cohesin and its functional role awaits in vivo validation. Here, we show that male mice lacking RAD21L are defective in full synapsis of homologous chromosomes at meiotic prophase I, which provokes an arrest at zygotene and leads to total azoospermia and consequently infertility. In contrast, RAD21L-deficient females are fertile but develop an age-dependent sterility. Thus, our results provide in vivo evidence that RAD21L is essential for male fertility and in females for the maintenance of fertility during natural aging.  相似文献   

7.
Until the onset of anaphase, sister chromatids are bound to each other by a multi-subunit protein complex called cohesin. Since chromosomes in meiosis behave differently from those in mitosis, the cohesion and separation of homologous chromosomes and sister chromatids in meiosis are thought to be regulated by meiosis-specific cohesin subunits. Actually, several meiosis-specific cohesin subunits, including Rec8, STAG3 and SMC1beta, are known to exist in mammals; however, there are no reports of meiosis-specific cohesin subunits in other vertebrates. To investigate the protein expression and localization of cohesin subunits during meiosis in non-mammalian species, we isolated cDNA clones encoding SMC1alpha, SMC1beta, SMC3 and Rad21 in the medaka and produced antibodies against recombinant proteins. Medaka SMC1beta was expressed solely in gonads, while SMC1alpha, SMC3 and Rad21 were also expressed in other organs and in cultured cells. SMC1beta forms a complex with SMC3 but not with Rad21, in contrast to SMC1alpha, which forms complexes with both SMC3 and Rad21. SMC1alpha and Rad21 were mainly expressed in mitotically dividing cells in the testis (somatic cells and spermatogonia), although their weak expression was detected in pre-leptotene spermatocytes. SMC1beta was expressed in spermatogonia and spermatocytes. SMC1beta was localized along the chromosomal arms as well as on the centromeres in meiotic prophase I, and its existence on the chromosomes persisted up to metaphase II, a situation different from that reported in the mouse, in which SMC1beta is lost from the chromosome arms in late pachytene despite its universal presence in vertebrates.  相似文献   

8.
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.  相似文献   

9.
Cohesin is a protein complex that plays an essential role in pairing replicated sister chromatids during cell division. The vertebrate cohesin complex consists of four core components including structure maintenance of chromosomes proteins SMC1 and SMC3, RAD21, and SA2/SA1. Extensive research suggests that cohesin traps the sister chromatids by a V-shaped SMC1/SMC3 heterodimer bound to the RAD21 protein that closes the ring. Accordingly, the single "ring" model proposes that two sister chromatids are trapped in a single ring that is composed of one molecule each of the 4 subunits. However, evidence also exists for alternative models. The hand-cuff model suggests that each sister chromatid is trapped individually by two rings that are joined through the shared SA1/SA2 subunit. We report here the determination of cohesin subunit stoichiometry of endogenous cohesin complex by quantitative mass spectrometry. Using qConCAT-based isotope labeling, we show that the cohesin core complex contains equimolar of the 4 core components, suggesting that each cohesin ring is closed by one SA1/SA2 molecule. Furthermore, we applied this strategy to quantify post-translational modification-dependent cohesin interactions. We demonstrate that quantitative mass spectrometry is a powerful tool for measuring stoichiometry of endogenous protein core complex.  相似文献   

10.
In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premeiotic S phase on. Subsequently, meiotic cohesin SMC1beta, cohesin SMC3, and AE proteins SCP2 and SCP3 formed dots along REC8-AEs, which extended and fused until they lined REC8-AEs along their length. In metaphase I, SMC1beta, SMC3, SCP2, and SCP3 disappeared from the chromosome arms and accumulated around the centromeres, where they stayed until anaphase II. In striking contrast, REC8 persisted along the chromosome arms until anaphase I and near the centromeres until anaphase II. We propose that REC8 provides a basis for AE formation and that the first steps in AE assembly do not require SMC1beta, SMC3, SCP2, and SCP3. Furthermore, SMC1beta, SMC3, SCP2, and SCP3 cannot provide arm cohesion during metaphase I. We propose that REC8 then provides cohesion. RAD51 and/or DMC1 coimmunoprecipitates with REC8, suggesting that REC8 may also provide a basis for assembly of recombination complexes.  相似文献   

11.
BACKGROUND: Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS: Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS: Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.  相似文献   

12.
Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.  相似文献   

13.
During meiosis, a specialized chromosome structure is assembled to promote pairing/synapsis of homologous chromosomes and meiotic recombination, a process yielding chiasmata between homologs to ensure accurate segregation. Meiosis‐specific cohesin complexes mediating sister chromatid cohesion play pivotal roles in almost all these events, including synaptonemal complex (SC) formation. In this issue of EMBO Reports, Agostinho and colleagues have examined chromosome axes and SC structures by taking advantage of a hypomorphic Stag3 mutant in which the levels of the cohesin subunit REC8 are partly reduced 6 . Using super‐resolution microscopy, the authors illuminate previously unforeseen chromosome axis structures, showing locally separated axes in regions where REC8 is absent, regardless of RAD21L or RAD21 cohesin localization. Furthermore, they assessed the relationship between sister chromatid cohesion and inter‐sister SC formation, demonstrating that “axial opening” in the REC8‐free region is accompanied by illegitimate SC formation between sister chromatids. This study highlights the physiological importance of REC8 in sister chromatid cohesion and proper SC formation during meiosis, suggesting a new model in which a high density of REC8 deposition along the chromosome prevents illegitimate inter‐sister SC formation.  相似文献   

14.
Sister chromatid cohesion in meiosis is established by cohesin complexes, including the Rec8 subunit. During meiosis I, sister chromatid cohesion is destroyed along the chromosome arms to release connections of recombined homologous chromosomes (homologues), whereas centromeric cohesion persists until it is finally destroyed at anaphase II. In fission yeast, as in mammals, distinct cohesin complexes are used depending on the chromosomal region; Rec8 forms a complex with Rec11 (equivalent to SA3) mainly along chromosome arms, while Psc3 (equivalent to SA1 and SA2) forms a complex mainly in the vicinity of the centromeres. Here we show that separase activation and resultant Rec8 cleavage are required for meiotic chromosome segregation in fission yeast. A non-cleavable form of Rec8 blocks disjunction of homologues at meiosis I. However, displacing non-cleavable Rec8 restrictively from the chromosome arm by genetically depleting Rec11 alleviated the blockage of homologue segregation, but not of sister segregation. We propose that the segregation of homologues at meiosis I and of sisters at meiosis II requires the cleavage of Rec8 along chromosome arms and at the centromeres, respectively.  相似文献   

15.
16.
During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super‐resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild‐type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister‐chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.  相似文献   

17.
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.  相似文献   

18.
Yu HG  Koshland D 《Cell》2005,123(3):397-407
During meiosis, segregation of homologous chromosomes necessitates the coordination of sister chromatid cohesion, chromosome condensation, and recombination. Cohesion and condensation require the SMC complexes, cohesin and condensin, respectively. Here we use budding yeast Saccharomyces cerevisiae to show that condensin and Cdc5, a Polo-like kinase, facilitate the removal of cohesin from chromosomes prior to the onset of anaphase I when homologs segregate. This cohesin removal is critical for homolog segregation because it helps dissolve the recombination-dependent links between homologs that form during prophase I. Condensin enhances the association of Cdc5 with chromosomes and its phosphorylation of cohesin, which in turn likely stimulates cohesin removal. Condensin/Cdc5-dependent removal of cohesin underscores the potential importance of crosstalk between chromosome structural components in chromosome morphogenesis and provides a mechanism to couple chromosome morphogenesis with other meiotic events.  相似文献   

19.
Defining the mechanisms of chromosomal cohesion and dissolution of the cohesin complex from chromatids is important for understanding the chromosomal missegregation seen in many tumor cells. Here we report the identification of a novel cohesin-resolving protease and describe its role in chromosomal segregation. Sister chromatids are held together by cohesin, a multiprotein ring-like complex comprised of Rad21, Smc1, Smc3, and SA2 (or SA1). Cohesin is known to be removed from vertebrate chromosomes by two distinct mechanisms, namely, the prophase and anaphase pathways. First, PLK1-mediated phosphorylation of SA2 in prophase leads to release of cohesin from chromosome arms, leaving behind centromeric cohesins that continue to hold the sisters together. Then, at the onset of anaphase, activated separase cleaves the centromeric cohesin Rad21, thereby opening the cohesin ring and allowing the sister chromatids to separate. We report here that the calcium-dependent cysteine endopeptidase calpain-1 is a Rad21 peptidase and normally localizes to the interphase nuclei and chromatin. Calpain-1 cleaves Rad21 at L192, in a calcium-dependent manner. We further show that Rad21 cleavage by calpain-1 promotes separation of chromosome arms, which coincides with a calcium-induced partial loss of cohesin at several chromosomal loci. Engineered cleavage of Rad21 at the calpain-cleavable site without activation of calpain-1 can lead to a loss of sister chromatid cohesion. Collectively, our work reveals a novel function of calpain-1 and describes an additional pathway for sister chromatid separation in humans.  相似文献   

20.
Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1 beta, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1 beta-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1 beta has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号