首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low host plant nitrogen (N) content on herbivore performance has rarely been studied together with the herbivore's feeding behaviour. We explored this relationship with juvenile Omocestus viridulus (Orthoptera: Acrididae) grasshoppers using fertilized and unfertilized host grasses. Due to lower growth rates, grasshoppers reared on N-poor grasses exhibited slightly prolonged development and smaller adult size, while mortality was similar among the fertilizer treatments. This was found both in the laboratory and in outdoor cages under natural climatic conditions. A parallel analysis of feeding behaviour revealed that the grasshoppers counterbalance N shortage by compensatory feeding, and are capable of selectively feeding among grasses of contrasting nutritional quality when given a choice. This indicates a striking ability of O. viridulus to regulate nutrient intake in the face of imbalanced food sources. Although the species exploits a relatively very poor autotroph nutrient base in the wild, as underpinned by N analysis of natural host grasses and grasshopper tissue, our data suggest that natural food quality imposes no relevant constraint on the herbivore's performance. Our study thus challenges the importance of simple plant-mediated control of herbivore populations, such as N limitation, but supports the view that herbivores balance their intake of N and energy.  相似文献   

2.
Environmental stresses affect plant growth and performance in nature. Host plant quality in turn affects herbivore performance and population dynamics. In view of these interactions, two major hypotheses were formulated. The plant stress hypothesis proposes that physiologically stressed plants become more susceptible to herbivores. The plant vigour hypothesis proposes that plants that grow vigorously are favourable to herbivores. Here we test the plant stress/plant vigour hypotheses for a leaf miner, Agromyza nigripes (Diptera; Agromyzidae), on the grass Holcus lanatus. We assessed larval performance (survival, developmental time, pupal mass) on grasses growing under different levels of nutrients (Hoagland solution) and drought stress, under controlled field and greenhouse conditions. Plant vigour and nutrient content were high on soils with an intermediate nutrient concentration and lower under drought stress and soil nutrient shortage and overdose. Larval performance was also highest on wet soils with intermediate nutrient supply. The results of the mining flies support the plant vigour hypothesis (density, survival and development better on vigorous plants). Herbivore performance is higher on leaves with a higher protein content.  相似文献   

3.
The plant cell wall may play an important role in defence against herbivores since it can be both a barrier to, and nutrient diluter of, the easily digested cell contents. The aim of this study was to investigate the digestibility of the cell wall of three grasses, Triticum aestivum L., Dactyloctenium radulans (R. Br.) Beauv., and Astrebla lappacea (Lindl.) Domin, by the Australian plague locust, Chortoicetes terminifera Walker (Orthoptera: Acrididae, Acridinae) as determined by the Van Soest method [ Van Soest PJ, Robertson JB & Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597]. Determination of plant cell wall digestion by locusts required a precise methodological procedure to determine both the exact intake and the concentration of cell wall in the diet and the faeces. Plant cell wall determination is affected by the particle size distribution of the dried plant material. All three grasses differed in the percentage of cell wall per gram dry matter and the proportions of hemicellulose, cellulose, and acid‐detergent sulphuric lignin within the cell wall. The locust was unable to digest the cell wall of any of the grasses. Thus, plant cell walls are a mechanical barrier hindering locusts assimilating nutrients. That is, access, rather than nutrient concentration per se, may be limiting nutrient factor.  相似文献   

4.
There is mounting evidence silicon (Si) can alter plant nutrient dynamics and is an important functional trait in plant defence and plant–insect ecology. Despite this, there remains a paucity in our understanding of how Si‐driven changes in nutritional quality can impact herbivore performance across different plant species. We investigated how Si alters plant nutritional quality and the concomitant effects on the performance of the Australian native generalist herbivore Helicoverpa punctigera feeding on three economically significant plant species of varying Si‐uptake ability: Brassica napus (non‐Si accumulator), Cucumis sativus (intermediate Si accumulator) and Sorghum bicolor (high Si accumulator). Si supplementation reduced the nutritional quality of B. napus but increased phosphorus concentrations in S. bicolor. Si reduced herbivore performance in all host–plant species, which correlated directly with Si concentrations in Si‐accumulating host plants C. sativus and S. bicolor. However, on B. napus, Si affected herbivore performance indirectly by reducing nutritional quality (foliar carbon:nitrogen ratio and phosphorus concentration). This suggests Si availability can affect herbivore performance directly via Si concentration on Si‐accumulating hosts, and indirectly via nutritional quality in a non‐Si accumulator. The resistance‐enhancing effects of Si on multiple species offer opportunity for agriculture to utilise this abundant element in sustainable management practices.  相似文献   

5.
The growth rates of insect herbivores commonly decrease when they feed on mature leaves due to the combined effects of several nutritional and physiological mechanisms. Environmental stresses during leaf development may also decrease herbivore performance. The present study tests two main hypotheses to help clarify the importance of these factors for the nutrition and growth of an insect herbivore: (i) decreases in nutrient levels, consumption rates and nutrient assimilation efficiencies impact negatively on herbivores feeding on mature leaves and (ii) wind stress has a negative impact on herbivores feeding on mature leaves. The results show that mature poplar (Populus alba × Populus tremula) leaves have decreased levels of protein and increased levels of fibre, and that growth rates of gypsy moth (Lymantria dispar L.) are decreased on mature leaves in association with decreased consumption rates. However, in contrast to the first hypothesis, protein and carbohydrate are assimilated efficiently (74–82% and 84–87%, respectively) from immature and mature poplar leaves. The larvae are able to chew mature leaves as efficiently as immature leaves, potentially maximizing nutrient extraction. By contrast to the second hypothesis, wind‐stressed leaves have no significant detrimental effects on nutrient assimilation efficiencies, and the lower growth rates of L. dispar larvae feeding on mature wind‐stressed leaves can be explained by lower consumption rates. Therefore, the availability of nutrients to herbivores feeding on mature tree leaves is not necessarily impacted by lower assimilation efficiencies, even when leaves develop under wind stress. These results help explain some of the large variation between the nutritional qualities of trees for forest Lepidoptera.  相似文献   

6.
Feedstock crops selected for bioenergy production to date are almost exclusively perennial grasses because of favorable physiological traits that enhance growth, water use, and nutrient assimilation efficiency. Grasses, however, tend to rely primarily on physical defenses, such as silica, to deter herbivores. Silica impedes processing of feedstocks and introduces a trade-off between managing for cost efficiency (i.e., yield) and plant defenses. To test how silica modulates herbivory in two of the most preferred feedstock crops for production across the central United States, miscanthus (Miscanthus x giganteus Greef and Deuter ex Hodkinson and Renvoize) and switchgrass (Panicum virgatum L.), we examined the performance of two immature generalist insect herbivores, fall armyworm (Spodoptera frugiperda (J.E. Smith) and the American grasshopper [Schistocerca americana (Drury)], on grasses grown under silica and nitrogen amendment. Both miscanthus and switchgrass assimilated nitrogen and silica when grown in amended soil that altered the consumption and conversion efficiency of herbivores consuming leaf tissue. The magnitude of nutrient assimilation, however, depended on intrinsic plant traits. Nitrogen increased conversion efficiency for both fall armyworm and American grasshopper but increased consumption rate only for fall armyworm. Silica reduced conversion efficiency and increased consumption rate only for the American grasshopper. Because of this variability, management strategies that reduce silica or increase nitrogen content in feedstock crops to enhance yields may directly influence the ability of bioenergy grasses to deter certain generalist herbivores.  相似文献   

7.
The food preferences of tame buffaloes grazing different vegetation types were recorded. The effects of fire and rainfall were investigated. By initiating a new growth cycle, fire altered the food habits of large herbivores and also the distribution of small mammals. Seasonal variations in the effect of rainfall on plant growth explains why preferences did not change in proportion to precipitation. The more important grasses were collected and their parts analysed physically and chemically. Their stem to leaf ratio is considered to have influenced the species eaten by coarse grazers such as buffalo. A broad correlation was obtained between buffalo preferences and the percentage green leaf of Hyparrhenia filipendula and Themeda triandra. This correlation was improved when preferences were compared with the number of grams green leaf carbohydrate per 100 g dry grass. There was a negative response to the silica present in dead leaves, but stem fibre appeared to have little effect on preferences. A grazing animal experiences a combination of attractants and repellants, i.e. green leaf carbohydrate and protein less stem fibre and dead leaf silica. Other palatability factors were noted, in particular tannins and oils in grasses of the tribe Andropogoneae. These may act as repellants, possibly only when the grazing animal has alternative vegetation from which to choose. The mineral content of grasses appeared to be adequate and calcium and phosphorus were present in about the required proportions. The observations support the belief that selective grazing enables a herbivore to consume a diet of significantly higher nutritive value than that of the average sward. Browsing and new growth after fire help compensate for the low nutritive value of pasture during the dry season. The nutritive value of the diet is considered to be the proximal factor in the seasonal cycle of reproduction of the buffalo and probably the ultimate factor in the reproduction of certain other ungulates and rodents.  相似文献   

8.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

9.
The Miocene radiation of C4 grasses under high‐temperature and low ambient CO2 levels occurred alongside the transformation of a largely forested landscape into savanna. This inevitably changed the host plant regime of herbivores, and the simultaneous diversification of many consumer lineages, including Bicyclus butterflies in Africa, suggests that the radiations of grasses and grazers may be evolutionary linked. We examined mechanisms for this plant–herbivore interaction with the grass‐feeding Bicyclus safitza in South Africa. In a controlled environment, we tested oviposition preference and hatchling performance on local grasses with C3 or C4 photosynthetic pathways that grow either in open or shaded habitats. We predicted preference for C3 plants due to a hypothesized lower processing cost and higher palatability to herbivores. In contrast, we found that females preferred C4 shade grasses rather than either C4 grasses from open habitats or C3 grasses. The oviposition preference broadly followed hatchling performance, although hatchling survival was equally good on C4 or C3 shade grasses. This finding was explained by leaf toughness; shade grasses were softer than grasses from open habitats. Field monitoring revealed a preference of adults for shaded habitats, and stable isotope analysis of field‐sampled individuals confirmed their preference for C4 grasses as host plants. Our findings suggest that plant–herbivore interactions can influence the direction of selection in a grass‐feeding butterfly. Based on this work, we postulate future research to test whether these interactions more generally contribute to radiations in herbivorous insects via expansions into new, unexploited ecological niches.  相似文献   

10.
The role of neuropeptides in caterpillar nutritional ecology   总被引:5,自引:0,他引:5  
Bede JC  McNeil JN  Tobe SS 《Peptides》2007,28(1):185-196
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.  相似文献   

11.
Food mixing strategies were compared in the cryptically coloured, relatively sedentary `solitarious' and the highly mobile, conspicuously coloured `gregarious' phases of the desert locust, Schistocerca gregaria. Based on phase related differences in behaviour and nutritional regulatory responses, we predicted that solitarious nymphs, compared to gregarious nymphs, would move less between nutritionally complementary foods, particularly as the distance between the foods increased. We manipulated the nutritional composition [protein (p) and digestible carbohydrate (c) content] of two foods in an experimental arena and varied the distance between the foods using a factorial experimental design. Results indicated that in general, solitarious nymphs showed greater fidelity to individual food dishes than did gregarious insects (i.e., they concentrated their feeding mainly on one dish). However, results also demonstrated that for both phases fidelity to a particular food dish increased as the distance between the dishes increased, and that the number of switches between dishes decreased with increasing distance. In the smallest arenas, though, gregarious nymphs switched more frequently between the two food dishes than solitarious nymphs, even when the two dishes contained the same, near-optimal food (p18:c24). When challenged by having the two dishes either placed furthest apart (2 m) or more divergent in nutritional composition (p29:c13 vs. p7:c35), insects of both phases regulated protein intake more strongly than carbohydrate intake, by eating more from the dish containing higher-protein food.  相似文献   

12.
Locusts are major intermittent threats to food security and the ecological factors determining where and when these occur remain poorly understood. For many herbivores, obtaining adequate protein from plants is a key challenge. We tested how the dietary protein : non-structural carbohydrate ratio (p : c) affects the developmental and physiological performance of 4th-5th instar nymphs of the South American locust, Schistocerca cancellata, which has recently resurged in Argentina, Bolivia and Paraguay. Field marching locusts preferred to feed on high carbohydrate foods. Field-collected juveniles transferred to the laboratory selected artificial diets or local plants with low p : c. On single artificial diets, survival rate increased as foods became more carbohydrate-biased. On single local plants, growth only occurred on the plant with the lowest p : c. Most local plants had p : c ratios substantially higher than optimal, demonstrating that field marching locusts must search for adequate carbohydrate or their survival and growth will be carbohydrate-limited. Total body lipids increased as dietary p : c decreased on both artificial and plant diets, and the low lipid contents of field-collected nymphs suggest that obtaining adequate carbohydrate may pose a strong limitation on migration for S. cancellata. Anthropogenic influences such as conversions of forests to pastures, may increase carbohydrate availability and promote outbreaks and migration of some locusts.  相似文献   

13.
The geometric framework of nutrition predicts that populations restricted to a single imbalanced diet should evolve post-ingestive nutritional compensation mechanisms bringing the blend of assimilated nutrients closer to physiological optimum. The evolution of such nutritional compensation is thought to be mainly driven by the ratios of major nutrients rather than overall nutritional content of the diet. We report experimental evolution of divergence in post-ingestive nutritional compensation in populations of Drosophila melanogaster adapted to diets that contained identical imbalanced nutrient ratios but differed in total nutrient concentration. Larvae from ‘Selected’ populations maintained for over 200 generations on a nutrient-poor diet with a 1 : 13.5 protein : carbohydrate ratio showed enhanced assimilation of nitrogen from yeasts and reduced assimilation of carbon from sucrose than ‘Control’ populations evolved on a diet with the same nutrient ratio but fourfold greater nutrient concentration. Compared to the Controls, the Selected larvae also accumulated less triglycerides relative to protein. This implies that the Selected populations evolved a higher assimilation rate of amino acids from the poor imbalanced diet and a lower assimilation of carbohydrates than Controls. Thus, the evolution of nutritional compensation may be driven by changes in total nutrient abundance, even if the ratios of different nutrients remain unchanged.  相似文献   

14.
Because key nutritional processes differ in their thermal optima, ectotherms may use temperature selection to optimize performance in changing nutritional environments. Such behaviour would be especially advantageous to small terrestrial animals, which have low thermal inertia and often have access to a wide range of environmental temperatures over small distances. Using the locust, Locusta migratoria, we have demonstrated a direct link between nutritional state and thermoregulatory behaviour. When faced with chronic restrictions to the supply of nutrients, locusts selected increasingly lower temperatures within a gradient, thereby maximizing nutrient use efficiency at the cost of slower growth. Over the shorter term, when locusts were unable to find a meal in the normal course of ad libitum feeding, they immediately adjusted their thermoregulatory behaviour, selecting a lower temperature at which assimilation efficiency was maximal. Thus, locusts use fine scale patterns of movement and temperature selection to adjust for reduced nutrient supply and thereby ameliorate associated life-history consequences.  相似文献   

15.
Abstract.  1. Factors affecting the nutritional ecology of mixed-feeding, polyphagous herbivores are poorly understood. Mixed-feeding herbivores do better when they consume both forb and grass species although they typically feed primarily on forbs, which are of relatively higher protein content than grasses.
2. In a field experiment, we examined the effects of nitrogen and phosphorus fertilization and associated changes in host-plant C:N:P on proportional grass consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus , using natural abundance stable carbon isotope (12C/13C) methods. We also examined a grass-feeding ( Phoetaliotes nebrascensis ) and forb-feeding ( Hesperotettix viridis ) species.
3. The C isotope signatures of M. bivittatus collected from plots fertilized with nitrogen (+N), phosphorus (+P), nitrogen and phosphorus (+N+P) and no fertilizer were compared with the C isotope signatures of plants in those plots to determine the proportion of assimilated C derived from C4 grasses and C3 forbs in each plot. We also examined the relationship between M. bivittatus diets and plant C:N:P stoichiometry.
4. The proportion of grass assimilated approximately doubled in N-fertilized treatments (39.1 ± 0.1%) compared with non-fertilized treatments (19 ± <0.1%), an increase associated with decreased C:N and increased N:P of grasses.
5. These results indicate that mixed-feeding M. bivittatus can selectively feed to balance C:N:P intake even when choosing between two structurally and chemically different groups of plants.
6. The strong relationship between diet selection and grass stoichiometry also suggests that plant nutrient composition may be more important than defensive chemistry in food choice.  相似文献   

16.
In spite of increasing awareness that interactions between herbivory and the supply rates of multiple nutrients control biodiversity, ecosystem functions and ecosystem services in ecological communities, few experimental studies have concurrently examined the independent and joint effects of multiple nutrients and mammalian consumers on these responses in natural systems. Here we quantify the independent and interactive effects of multiple concurrent changes to resources and consumers in an invaded annual grassland community in California. In a two‐year study using thirty‐seven 400‐m2 plots, we examine interactions among four nutrient treatments (N, P, K and micronutrients) and a keystone herbivore (pocket gopher Thomomys bottae) on four plant community outcomes: 1) plant diversity, 2) functional group composition, 3) net biomass production, an important ecosystem function, and 4) infection risk by a group of viral pathogens shared by crop and non‐crop grasses (barley and cereal yellow dwarf viruses), an important regulating ecosystem service. We found that grassland biodiversity and infection risk were controlled by nutrient identity and supply ratio whereas nutrients interacted strongly with consumers to control grassland composition and net primary productivity. The most important insights arising from this multi‐factor experiment are that net biomass production increased with phosphorus or nitrogen supply; however, when gophers were present, nitrogen caused no net effect on biomass production. In addition, infection risk was driven by phosphorus, nitrogen and micronutrient supply. Infection in a sentinel host increased strongly with the addition of micronutrients or phosphorus; however, infection declined with increasing N/P supply ratio, indicating stoichiometric control of infection risk. Finally, in spite of manipulating multiple factors, plant species richness declined with nitrogen, alone. The importance of higher‐order interactions demonstrates that a multi‐factor approach is critical for effective predictions in a world in which anthropogenic activities are simultaneously changing herbivore abundance and the relative supply of many nutrients.  相似文献   

17.
The plant metabolite composition is modulated by various abiotic and biotic factors including nutrient availability and herbivory. In turn, induced changes in plant quality can affect herbivore performance and mediate indirect interactions between spatially separated herbivores sharing a host. Studies on plant-mediated herbivore interactions have been carried out at single fertilization regimes only, but we hypothesized that nutrient availability modifies these interactions. Therefore, we studied the interactions between two vascular tissue herbivores, the aboveground feeding aphid Brevicoryne brassicae and the belowground infesting nematode Heterodera schachtii, on Arabidopsis thaliana grown under two nitrate fertilization conditions (varying by 33 %). Furthermore, we investigated plant growth and primary metabolic responses to fertilization and herbivore treatments, which could potentially mediate these interactions, as the herbivores may act as metabolic sinks. Whereas nematodes had no effects on aphids, aphid presence influenced nematodes in opposite directions, depending on fertilization: at low nitrate supply, aphids had a promoting effect on nematodes, whereas at high nitrate fertilization they lowered the nematode infestation compared to control plants. Plants produced significantly more biomass under high nitrate supply but C and N contents were not altered. Primary metabolite profiles differed only marginally between roots of both fertilization treatments in plants with and without aphids, indicating that nematodes may respond to these or other metabolic modifications, which are caused by minute environmental changes, in a sensitive way. Our results highlight the need to consider the importance of plant nutrient availability on the outcome of interactions between co-occurring herbivores in future studies.  相似文献   

18.
Summary We tested the hypothesis that C4 grasses are inferior to C3 grasses as host plants for herbivorous insects by measuring the relative performance of larvae of a graminivorous lepidopteran, Paratrytone melane (Hesperiidae), fed C3 and C4 grasses. Relative growth rates and final weights were higher in larvae fed a C3 grass in Experiment I. However, in two additional experiments, relative growth rates and final weights were not significantly different in larvae fed C3 and C4 grasses. We examined two factors which are believed to cause C4 grasses to be of lower nutritional value than C3 grasses: foliar nutrient levels and nutrient digestibility. In general, foliar nutrient levels were higher in C3 grasses. In Experiment I, protein and soluble carbohydrates were digested from a C3 and a C4 grass with equivalent efficiencies. Therefore, differences in larval performance are best explained by higher nutrient levels in the C3 grass in this experiment. In Experiment II, soluble carbohydrates were digested with similar efficiencies from C3 and C4 grasses but protein was digested with greater efficiency from the C3 grasses. We conclude (1) that the bundle sheath anatomy of C4 grasses is not a barrier to soluble carbohydrate digestion and does not have a nutritionally significant effect on protein digestion and (2) that P. melane may consume C4 grasses at compensatory rates.  相似文献   

19.
The current dramatic increase in atmospheric CO2 concentration favours C3 versus C4 photosynthesis, and although other aspects of environmental conditions come into play, it implies an uncertain future for C4 grasses. If it has been suggested that the poor quality of C4 grasses contributed to large mammalian herbivores declines as C4 grasslands spread from the late Miocene, these investigations of the past have not been matched by a similar attention focused on the future implications of C4 to C3 shifts. Here we discuss how these may affect grazing systems, also considering other aspects of C3/C4 differences (productivity, phenology) which might affect herbivore performance. Current knowledge suggests that important changes in herbivore performance could be observed, but is too fragmentary to allow general quantitative conclusions. We urge plant and herbivore ecologists to collectively address these limitations, as the future of grazing systems has important implications for biodiversity and human livelihoods.  相似文献   

20.
Temperature can regulate a number of important biological processes and species interactions. For example, environmental temperature can alter insect herbivore consumption, growth and survivorship, suggesting that temperature‐driven impacts on herbivory could influence plant community composition or nutrient cycling. However, few studies to date have examined whether rising temperature influences herbivore preference and performance among multiple plant species, which often dictates their impact at the community level. Here, we assessed the effects of temperature on the performance and preference of the generalist herbivore Popillia japonica among nine plant species. We show that, on average, consumption rates and herbivore performance increased at higher temperatures. However, there was considerable variation among plant species with consumption and performance increasing on some plant species at higher temperatures but decreasing on others. Plant nutritional quality appeared to influence these patterns as beetles increased feeding on high‐nitrogen plants with increasing temperature, suggesting stronger nitrogen limitation. In addition to changes in feeding rates, feeding preferences of P. japonica shifted among temperatures, a pattern that was largely explained by differential deterrence of plant chemical extracts at different temperatures. In fact, temperature‐induced changes in the efficacy of plant chemical extracts led P. japonica to reduce its diet breadth at higher temperatures. Our results indicate that rising temperatures will influence herbivore feeding behavior by altering the importance of plant nutritional and chemical traits, suggesting that climate change will alter the strength and sign of plant–insect interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号