首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Water, acetone and chloroform extracts of E. officinalis fruit reduced sodium azide and NPD induced his+ revertants significantly in TA100 and TA97 a strains respectively of S. typhimurium. The chloroform extract was less active as compared to water and acetone extracts. Autoclaving of water extract for 15 min did not reduce its activity. The enhanced inhibitory activity of the extracts on pre-incubation suggests the possibility of desmutagens in the extracts. Besides ascorbic acid, a constituent of the extract, the role of other antimutagenic factors in the extract cannot be ruled out.  相似文献   

2.
The antimutagenic effect of dialysed cell extracts of 4 strains of propionic acid bacteria was examined against the mutagenicity of sodium azide in the TA1535 tester strain of Salmonella typhimurium using the Ames test. It was noted that dialysates of 2 strains of Propionibacterium shermanii, P. pentosaceum and P. acnes, significantly reduced sodium azide-induced revertants. The dialysate of propionic acid cocci did not show an antimutagenic effect. The inhibitory activity was enhanced if the mutagen and extract were coincubated for 20 min prior to performing the mutagenicity assay. Antimutagenicity of dialysates from P. shermanii VKM-103 against MNNG and 9-aminoacridine was shown in S. typhimurium strains TA1535 and TA97. The antimutagenic activity was found in the protein fraction of the cell extract of P. shermanii. The proteins of the dialysate of P. shermanii were separated using a Toyopearl gel column into 3 main peaks according to their molecular weights. The antimutagenic activity towards sodium azide was found in the second and the third peaks. We suggest that dialysates of the cells of propionic acid bacteria contain several kinds of antimutagenic substances with different molecular weights.  相似文献   

3.
In the present study, the Salmonella typhimurium tester strain TA 100 was used in the plate-incorporation test to examine the antimutagenic potential of caffeic, ferulic and cichoric acids extracted from plant species of genera Echinacea (L) Moench, as well as of another phenolic acids, on 3-(5-nitro-2-furyl)acrylic acid (5NFAA) and sodium azide mutagenicity. All tested compounds possess antimutagenic activity. In the case of 5NFAA, the antimutagenic potency of tested compounds was in the order of gallic acid > ferulic acid > caffeic acid > syringic acid > vanillic acid. The mutagenic effect of sodium azide was inhibited by tested phenolic acids by about 20-35 %. The most effective compound, gallic acid inhibits this effect by 82 % in the concentration of 500 mug/plate. The only exception from favourable properties of tested phenolic acids is cichoric acid, which in the contrary significantly increased the mutagenic effect of 5NFAA.  相似文献   

4.
Methanolic extracts of Acorus calamus (Rhizome), Hemidesmus indicus (Stem), Holarrhena antidysenterica (Bark) and Plumbago zeylanica (Root), were tested for their antimutagenic potential. These extracts, at tested concentrations, showed no sign of mutagenicity to Salmonella typhimurium tester strains. The extracts of the plants exhibited varying level of antimutagenicity. At a dose of 100 microg/plate, the extracts exhibited the inhibition of His+ revertants from 18.51% to 82.66% against direct acting mutagens, methyl methanesulphonate (MMS) and sodium azide (NaN3) induced mutagenicity in Salmonella tester strains TA 97a, TA 100, TA 102 and TA 104. However, at lower concentrations (25 and 50 mcirog/plate) of the plant extracts, a decrease in antimutagenic activity was recorded. Dose dependent antimutagenic activity of the extracts is also evident from linear regression analysis of the data. The over all antimutagenic potential of above four extracts was found to be in order of A. calamus > H. indicus > H. antidysenterica > P. zeylanica. Further, total phenolic content of these extracts did not correlate with its antimutagenic activity in A. calamus and P. zeylanica.  相似文献   

5.
The mutagenic and antimutagenic effects of linalool, linalyl acetate and beta-caryophyllene were evaluated by the bacterial reverse mutation assay on Salmonella typhimurium TA 98 and TA 100, and on Escherichia coli WP2uvrA strains. Neither linalool nor beta-caryophyllene showed mutagenicity, but linalyl acetate induced a statistically significant increase in the number of revertant colonies in WP2uvrA, both with and without S9 mixture. Linalool was devoid of antimutagenic activity against 2-nitrofluorene (2NF), sodium azide (SA), methyl methane sulfonate (MMS) and 2-aminoanthracene (2AA). In contrast, beta-caryophyllene showed a strong antimutagenic activity against 2NF: at the maximum concentration tested (6.40mg/plate) the number of 2NF-induced revertant colonies was reduced by 83.9%. beta-Caryophyllene also showed to counteract the mutagenicity of SA (in TA 100), MMS and 2AA (in WP2uvrA): the effect was weak against SA (inhibition lower than 25%) and moderate against MMS and 2AA (up to 30.5%). The antimutagenic activity of beta-caryophyllene observed here suggests further studies to evaluate its possible chemopreventive properties.  相似文献   

6.
Antimutagenicity of water and chloroform extracts of dried myroblan Terminalia chebula was determined against two direct acting mutagens, sodium azide and 4-nitro-o-phenylenediamine (NPD) in strains TA100 and TA1535, and TA97a and TA98 of Salmonella typhimurium respectively and S9-dependent mutagen 2-aminofluorene (2-AF) in TA97a, TA98 and TA100 strains. Water extract reduced NPD as well as 2-AF induced his+ revertants significantly but did not have any perceptible effect against sodium azide included his+ revertants in TA100 and TA1535 strains of S. typhimurium. The pre-incubation studies, where the extract was incubated at 37 degrees C for 30 min with the said mutagen prior to plating, enhanced the inhibitory effect. Autoclaving the water extract reduced the inhibitory effect but the reduction in the effect was not significant. No inhibitory effect was observed in any of the strains and against any of the test mutagens with chloroform extract.  相似文献   

7.
The effects of sesamol, a phenolic compound responsible for the high resistance of sesame oil to oxidative deterioration as compared with other vegetable oils, have been investigated after mutagen treatment in various strains of Salmonella typhimurium. Sesamol was shown to exhibit strong antimutagenic effects in the Ames tester strains TA100 and TA102. The TA102 strain has been shown to be highly sensitive to reactive oxygen species. Mutagenicity was induced by the generation of oxygen radicals by tert-butylhydroperoxide (t-BOOH) or hydrogen peroxide (H(2)O(2)); therefore, the antimutagenic property of sesamol was attributed to its antioxidant properties. The superoxide and hydroxyl radical scavenging capabilities have further been elucidated using in vitro test systems. It was further shown to have a desmutagenic effect on t-BOOH-induced mutagenesis in TA102 strain. Sesamol also inhibited the mutagenicity of sodium azide (Na-azide) in TA100 tester strain while it had no effect on nitroquinoline-N-oxide (NQNO)-induced mutagenesis in TA98 strain of Salmonella typhimurium. Since active oxygen species are involved in multiple stage processes of carcinogenicity, this compound may also exhibit anticarcinogenic properties.  相似文献   

8.
alpha-Bisabolol (BISA) is a sesquiterpene alcohol found in the oils of chamomile (Matricaria chamomilla) and other plants. BISA has been widely used in dermatological and cosmetic formulations. This study was undertaken to investigate the mutagenicity and antimutagenicity of BISA in the Salmonella/microsome assay. Mutagenicity of BISA was evaluated with TA100, TA98, TA97a and TA1535 Salmonella typhimurium strains, without and with addition of S9 mixture. No increase in the number of his+ revertant colonies over the negative (solvent) control values was observed with any of the four tester strains. In the antimutagenicity assays, BISA was tested up to the highest nontoxic dose (i.e. 50 and 150 microg/plate, with and without S9 mix, respectively) against direct-acting (sodium azide, SA; 4-nitroquinoline-N-oxide, 4-NQNO; 2-nitrofluorene, 2-NF; and nitro-o-phenylenediamine, NPD) as well as indirect-acting (cyclophosphamide, CP; benzo[a]pyrene, B[a]P; aflatoxin B1, AFB1; 2-aminoanthracene, 2-AA; and 2-aminofluorene, 2-AF) mutagens. BISA did not alter mutagenic activity of SA and of NPD, and showed only a weak inhibitory effect on the mutagenicity induced by 4-NQNO and 2-NF. The mutagenic effects of AFB1, CP, B[a]P, 2-AA and 2-AF, on the other hand, were all markedly and dose-dependently reduced by BISA. It was also found that BISA inhibited pentoxyresorufin-o-depentylase (PROD, IC50 2.76 microM) and ethoxyresorufin-o-deethylase (EROD, 33.67 microM), which are markers for cytochromes CYP2B1 and 1A1 in rat liver microsomes. Since CYP2B1 converts AFB1 and CP into mutagenic metabolites, and CYP1A1 activates B[a]P, 2-AA and 2-AF, results suggest that BISA-induced antimutagenicity could be mediated by an inhibitory effect on the metabolic activation of these promutagens.  相似文献   

9.
The antimutagenicity of the cell extracts of Propionibacterium shermanii VKM-103, P. pentosaceum CCM 1859 and P. acnes CCM 3322 against mutagenicity of sodium azide and N-methyl-N'-nitro-N-nitrosoguanidine was demonstrated for the first time. The extracts of propionic acid cocci didn't show such effect. The antimutagenic factor acts as a desmutagen, has polypeptide nature and evidently is an enzyme (enzymes). The inhibitory effect of the extract is due to the presence of more than one protein factor in it.  相似文献   

10.
Erythrosine (diNa, tetraiodofluorescein) was nonmutagenic to the Ames/Salmonella typhimurium strains TA97a, TA98, TA100, TA102, and TA104, to a concentration of 2 mg/plate. No mutative intermediates were detected on metabolism by rat caecal cell-free extracts or rat liver S9 mixture; or on incubation with the comutagens, harman and norharman (+/- S9). Instead, an unexpected dose-dependent suppression in spontaneous reversion frequencies was observed (maximum approximately equal to 35% decrease). Erythrosine was antimutagenic to benzo[a]pyrene, but it did not decrease the mutagenicity of the other adduct-forming mutagen, 4-nitroquinoline N-oxide. The food dye was strongly antimutagenic to the bifunctional alkylating agent, mitomycin C, though it did not exhibit a similar effect on the mutagenicity of the corresponding monofunctional agent, methyl methanesulphonate. It partially depressed the mutagenic potentials of sodium azide. The antimutagenic effect of erythrosine on an intercalating agent, ethidium bromide, was discernible only at the highest dose (2 mg/plate). These results have been interpreted in terms of a genointeractive role of erythrosine. Erythrosine produced differential toxic effects in repair-deficient (TA97a, TA98, TA100) and repair-proficient (TA102, TA104) Salmonella tester strains; survival of the repair-deficient strains was found to be decreased. Photoinduced potentiation of erythrosine toxicity was observed, although light irradiation in the presence of erythrosine did not modify the reversion frequencies of the tester strains. The evidence strongly suggests that erythrosine, which exhibits nonmutagenicity in the Ames/Salmonella test, can interact with DNA repair enzymes and/or with DNA.  相似文献   

11.
Antimutagenic activity of Lactobacillus plantarum KLAB21, isolated from Korean kimchi, was investigated against MNNG (N-methyl-N-nitro-N-nitrosoguanidine), NQO (4-nitroquinoline-1-oxide), NPD (4-nitro-O-phenylenediamine) and aflatoxin B1 using Salmonella typhimurium strains TA100 and TA98. Although all the cell fractions including the culture supernatant, dry cells and cell-free extract exhibited antimutagenic activity against MNNG and NQO, the culture supernatant possessed the highest activity. The antimutagenic ratio of the culture supernatant was 98.4% against MNNG on strain TA100 and 57.3% against NQO on strain TA98. Its antimutagenic activity was reconfirmed by a Bacillus subtilis spore-rec assay. Levels of the antimutagenic ratios of other lactic acid bacteria originating from fermented milk ranged between 26.8 to 53% against MNNG and 28.5 to 43.4% against NQO. The antimutagenic activities of the strain KLAB21 against NPD were 72.6% on TA100 and 62.8% on TA98, and those against aflatoxin B1 were 82.5% on TA100 and 78.2% on TA98.  相似文献   

12.
The present study has been performed to evaluate the antimutagenic activity of quercetin, ascorbic acid and their combination against an oxidative mutagen. An effort was also made to correlate this activity to the in vitro antioxidant activity of these agents. Antimutagenicity testing was done in Ames Salmonella Assay system using Salmonella typhimurium TA102 against t-butylhydroperoxide as an oxidative mutagen. In vitro antioxidant scavenging activity was tested for DPPH free radical, superoxide anion, hydrogen peroxide and hydroxyl radical in their specific test systems. Quercetin (0.5-8 nmole/plate) and ascorbic acid (0.1-100 micromole/plate) showed significant effect. Quercetin (4 and 8 nmole/plate) when combined with ascorbic acid (500 nmole/plate) showed an increase in the antimutagenic activity. In vitro antioxidant activity of quercetin was better than ascorbic acid in all the test systems used. The study indicated that the antimutagenic activity of quercetin was not solely accountable by its antioxidant nature. However, in vitro free radical scavenging activity of quercetin correlated well with the antimutagenic activity.  相似文献   

13.
《Anaerobe》2001,7(1):37-44
Culture liquid and cells of Propionibacterium freudenreichii subsp. shermanii VKM-103 exerted a strong antimutagenic effect on mutations induced by 4-nitroquinoline-1-oxide, N-methyl-N′-nitro-N′-nitrosoguanidine, sodium azide (base pair substitutions) and 9-aminoacridine (frameshift mutations). No inhibitory effect was observed against mutagenesis induced by 2-nitrofluorene (frameshift mutations). The highest antimutagenic activity was found in the culture liquid of cells grown for 24 h. Acetic and propionic acids of the culture liquid produced by propionibacteria made no observable contribution to the antimutagenicity. Antimutagenic activity of the culture liquid was considerably reduced by protease treatment and by heating at 92°C for 10 min. Upon dialysis, the culture liquid lost almost all of its inhibitory activity. Cell wash solution also contained high antimutagenic activity which was lost upon protease treatment and dialysis. According to the exclusion limit of the dialysis bag, the molecular weight of the antimutagenic factor, presumably a protein, is less than 1.5 kDa. In addition, the cells of P. shermanii were capable of binding or modifying the mutagens, thereby decreasing their mutagenicity.  相似文献   

14.
Pyrolysates of cyanocobalamin, thiamine hydrochloride, riboflavin, pyridoxine hydrochloride, and ascorbic acid were tested for mutagenicity in the histidine-requiring mutants Salmonella typhimurium TA98 and TA100. Each vitamin was sealed in a glass tube and heated at 100-600 degrees C in a muffle furnace. Methanol-chloroform extracts of the pyrolysate of each vitamin tested did not show any mutagenicity in either TA98 or TA100 without rat liver 9000 x g supernatant fraction (S9) added. In the presence of S9, the B-group vitamins (cyanocobalamin, thiamine hydrochloride, riboflavin, and pyridoxine hydrochloride) were all mutagenic in TA98 and TA100, with the highest activity among the vitamins tested found in the pyrolysate of cyanocobalamin. The pyrolysate of 0.25 mumole cyanocobalamin produced 3200 revertants, while the pyrolysates of 0.25 mumole thiamine hydrochloride and riboflavin produced only 910 revertants, and the pyrolysate of pyridoxine hydrochloride did not show any mutagenicity at that amount. The mutagenicity was generally more active to TA98 than to TA100, indicating that frameshift-type mutagens were contained in the pyrolysates. The pyrolysate of ascorbic acid did not show any mutagenic activity in either TA98 or TA100 under the present experimental conditions.  相似文献   

15.
Chlorophyllin, the sodium and copper salt of chlorophyll, was tested for its ability to inhibit the mutagenic activity of a variety of complex mixtures--extracts of fried beef, fried shredded pork, red grape juice, red wine, cigarette smoke, tobacco snuff, chewing tobacco, airborne particles, coal dust and diesel emission particles--in strain TA98 of Salmonella typhimurium. Chlorophyllin was highly effective against the mutagenicity (90-100% inhibition) of 8 of these 10 mixtures. The mutagenicity of the other 2 mixtures was inhibited 75-80% at the highest concentration of chlorophyllin studied. Control and reconstruction experiments showed that chlorophyllin was not toxic to Salmonella at the concentrations used. The antimutagenic activity of chlorophyllin was heat-stable. The mechanism of the antimutagenicity of chlorophyllin in these experiments is not known; however, chlorophyllin is an antioxidant. Scavenging of radicals and/or interaction with the active group of mutagenic compounds may be responsible for its antimutagenic activity. The data reported here indicate that chlorophyllin is potentially useful as an antimutagenic agent.  相似文献   

16.
6-Azido-6-deoxy (AZd) derivatives of D-glucose, D-mannose, D-altrose, D-allose, L-idose, D-galactose, D-galactonic acid and D-galactitol, 3-azido-1,2-propanediol (azidoglycerol), 3,1-diazido-2-propanol (diazidoglycerol) and (at much higher doses) 2-azidoethanol were mutagenic in Salmonella typhimurium strains TA100 and TA1535. The mutagenic response was similar to that induced by sodium azide, i.e., the azido compounds failed to induce mutations in strain TA98, and mutagenesis was independent of plasmid pKM101, and independent of external activation. The specific mutagenicity (his+ rev/mmole) of AZd-glucose and AZd-galactose was decreased with increasing concentrations of D-glucose or D-galactose in the minimal agar medium and enhanced 100-fold or more when 0.2% citrate rather than 0.2% glucose served as the carbon source in the medium. Similarly, the mutagenic efficiency of azidoglycerol was inhibited by glycerol but not by D-glucose or D-galactose; however, the mutagenicity of sodium azide was not influenced by any of these carbon sources in the medium. The inhibition of the mutagenic action of azido hexoses and azido alcohols by non-azido structural analogs is assumed to reside in competition in transmembrane transport or for the metabolic pathways.  相似文献   

17.
Four naturally occurring compounds, indole-3-carbinol (I3C), apigenin (Api), ellagic acid (EA) and tannic acid (TA), were tested for their inhibitory effects against 1-nitropyrene- (1-NP) or 1,6-dinitropyrene (1,6-DNP)-induced genotoxicity in Salmonella tester strains and Chinese hamster ovary (CHO) cells. Api and TA strongly inhibited the bacterial mutagenesis induced by nitropyrenes, while 13C and EA had little or no effect. For example, in TA98, 0.2 μmole Api resulted in 48% and 56% inhibition of the mutagenicity induced by 4 nmole 1-NP and 0.035 nmole 1,6-DNP, respectively. With an equal dose, expected, a good correlation was observed between the antimutagenicity of nitropyrenes and their inhibitory effect on nitroreductase activity. This indicated that one of the possible antimutagenic mechanisms of Api or TA was to inactivate the metabolism of nitropyrenes. Two biological end-points, cytotoxicity and sister-chromatid exchange (SCEs), were used to screen the antigenotoxic effects of these compounds in CHO cells. At the sub-cytotoxic dose, 13C, Api and TA all protected against the cytotoxicity induced by 1-NP and 1,6-DNP, but only TA and Api gave a significant reduction of the frequency of SCEs. Moreover, this reduction was found to be highly dose-dependent.  相似文献   

18.
All the methanol extracts did not show mutagenic activity in Ames/Salmonella and Z. mays MI test systems. Furthermore, some extracts showed significant antimutagenic activity against 9-AA in Ames test system. Inhibition rates for 9-AA mutagenicity ranged from 25.51% (P. furfuracea??0.05 ??g/plate) to 66.14% (C. islandica??0.05 ??g/plate). In addition, all of the extracts showed significant antimutagenic activity against sodium azide (NaN3) mutagenicity on MI values of Z. mays.  相似文献   

19.
Antimutagenic, anticlastogenic, and bioprotective effect of polysaccharide glucomannan (GM) isolated fromCandida utilis was evaluated in four model test systems. The antimutagenic effect of GM against 9-aminoacridine (9-AA)- and sodium azide (NaN3)-induced mutagenicity was revealed in theSalmonella typhimurium strains TA97 and TA100, respectively. GM showed anticlastogenic effect against N-nitroso-N-methylurea (NMU) induced chromosome aberrations in theVicia sativa assay. The bioprotective effect of GM co-treated with methyl-methane-sulphonate (MMS) was also established inChlamydomonas reinhardtii repair deficient strainsuvs10 anduvs14. The statistically significant antimutagenic potential of GM was not proved against 4-nitro-quinoline-1-oxide (4-NQO)-induced mutagenicity inSaccharomyces cerevisiae D7 assay. It may be due to bioprotectivity of -mannan and -glucan, which are integral part ofS. cerevisiae cell walls. Due to the good water solubility, low molecular weight (30 kDa), antimutagenic/anticlastogenic, and bioprotective activity against chemical compounds differing in mode of action, GM appears to be a promising natural protective (antimutagenic) agent.  相似文献   

20.
The antioxidant and mutagenic/antimutagenic activities of the fixed oils from Nigella sativa (NSO) and Nigella damascena (NDO) seeds, obtained by cold press-extraction from the cultivar samples, were comparatively investigated for the first time. The antimutagenicity test was carried out using classical and modified Ames tests. The fatty acid composition of the fixed oils was characterized by gas chromatography–mass spectrometry (GC-MS) while the quantification of thymoquinone in the fixed oils was determined by UPC2. The main components of the NSO and NDO were found to be linoleic acid, oleic acid, and palmitic acid. The results of the Ames test confirmed the safety of NSO and NDO from the viewpoint of mutagenicity. The results of the three antioxidant test methods were correlated with each other, indicating NDO as having a superior antioxidant activity, when compared to the NSO. Both NSO and NDO exhibited a significant protective effect against the mutagenicity induced by aflatoxin B1 in Salmonella typhimurium TA98 and TA100 strains. When microsomal metabolism was terminated after metabolic activation of the mycotoxin, a significant increase in antimutagenic activity was observed, suggesting that the degradation of aflatoxin B1 epoxides by these oils may be a possible antimutagenic mechanism. It is worthy to note that this is the first study to assess the mutagenicity of NSO and NDO according to the OECD 471 guideline and to investigate antimutagenicity of NDO in comparison to NSO against aflatoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号