首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the role of protein kinase C and protein kinase A in cell proliferation and differentiation, the effects of K252a and its derivatives (K252b, KT5720), which have different inhibitory activity to these protein kinases, on the proliferation and differentiation of HL-60 cells were investigated. The proliferation and DNA synthesis of the HL-60 cells were inhibited by K252a in a dose dependent manner. However, K252b and KT5720 which are more specific inhibitors of protein kinase C or protein kinase A, respectively, had no observable effect on cell proliferation. K252a (40nM) enhanced the differentiation of HL-60 cells induced by 1,25(OH)2D3, retinoic acid and DMSO. K252b and KT5720 did not affect 1,25(OH)2D3-induced differentiation. K252a significantly inhibited the differentiation induced by PMA. These results demonstrate that K252a but not its derivatives can function as an antitumor drug and enhancer of the differentiation induced by various inducers.  相似文献   

2.
Human promyelocytic leukemia cells (HL-60) were treated with several differentiation inducers, then the changes in the activity of cytosolic protein kinase C (PKC) isoforms were examined by hydroxylapatite chromatography and the species of the isoforms were determined immunologically. In three undifferentiated HL-60 cell lines examined, PKC alpha and beta isoforms were present, but PKC gamma isoform was not detected. When the cells were induced by dimethylsulfoxide, dibutyryl cAMP, or nicotinamide to differentiate into granulocytes, these two PKC isoforms each increased to about 2- to 3-fold. When retinoic acid was used as the inducer, in addition to PKC alpha and beta, a third PKC isoform appeared. This isoform was clearly distinct from rat PKC alpha, beta, and gamma, immunologically. This isoform showed a distinctly lower Ca(2+)-requirement (3 microM) than that of PKC alpha or beta (100 microM) and was more dependent on cardiolipin and phosphatidylethanolamine, compared with PKC alpha, beta, and gamma. These results suggest that while the increases in the activities of PKC alpha and beta isoforms are common in the differentiation program initiated by several inducers, including retinoic acid, the emergence of an unclassified PKC isoform is a retinoic acid-specific process.  相似文献   

3.
We have studied, in streptolysin O-permeabilized HL-60 cells and in HL-60 membrane preparations, the effects of phorbol 12-myristate 13-acetate (PMA) on polyphosphoinositide-specific phospholipase C (PLC) activity and on terminal differentiation towards macrophagic-like cells. We showed that terminal differentiation was induced when differentiating concentrations of the drug were present for only 1-2 h in the culture medium. Conditions inducing differentiation also inhibited PLC activity for a long lasting period (at least 5 h). When terminal differentiation affected only part of the cell population, inhibition of phospholipase C activity was found to be less marked and reversible over the period studied. Moreover in experiments done in an HL-60 clone resistant to PMA, no inhibition of PLC activity was provoked by this tumour promotor. In order to study the involvement of protein kinase C in this process, we measured modifications of PLC activity by PMA in the presence of two different protein kinase C inhibitors, staurosporine and H-7. They both prevented the inhibition of PLC activity by PMA indicating that this inhibition is likely to be related to the effect of PMA on protein kinase C activity. This was also confirmed by the fact that active protein kinase C, by itself, was able to decrease PLC activity when added to membrane preparations or to streptolysin O-permeabilized control HL-60 cells. These results indicate that PMA acts in inhibiting phospholipase C activity through its effect on protein kinase C activation and/or on protein kinase C translocation to the plasma membrane and that terminal differentiation, might be related to changes in both protein kinase C and PLC activities.  相似文献   

4.
The role of C-kinase in the induction of maturation of HL-60 promyelocytic leukemia cells was examined using two activators of this kinase, 12-O-tetradecanoyl phorbol 13-acetate (TPA) and 1-oleoyl-2-acetylglycerol (OAG). At 10(-8) M, a concentration that induced maturation, TPA effectively stimulated C-kinase activity in cell-free preparations by increasing the affinity of the enzyme for Ca2+. Similar activation was observed with 20 micrograms/ml of OAG. At these concentrations, addition of either compound to intact cells stimulated the phosphorylation of cellular proteins. Treatment with TPA resulted in an increased phosphorylation of 14 proteins, 9 of which also changed in response to OAG. In addition to the effects on protein phosphorylation, TPA and OAG both affected choline lipid metabolism. TPA at 10(-8) M stimulated the incorporation of [methyl-3H]choline into phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine. OAG at 20 micrograms/ml had quantitatively similar effects on the labeling of the former two lipids, but did not affect incorporation of choline into lysophosphatidylcholine. Despite the similar biochemical effects of TPA and OAG, the diglyceride was unable to induce HL-60 cell maturation as measured by inhibition of cell growth, development of nonspecific esterase activity, phagocytosis, adherence of cells to plastic, and loss of transferrin receptor activity. The lack of effect is not due to metabolism of OAG; maturation could not be induced by treating cells with fresh OAG every 2 h for a period of 12 h. These results suggest a dissociation of the activation of C-kinase and the induction of HL-60 cell maturation by TPA.  相似文献   

5.
Immunoblot analysis showed that the 47 kDa platelet substrate of protein kinase C (P47) was expressed at low levels in undifferentiated HL-60 leukaemia cells. Treatment of these cells with dimethyl sulphoxide, 1 alpha,25-dihydroxycholecalciferol or retinoic acid caused progressive increases in P47 content. Retinoic acid (1 microM) elicited the largest response, a 4-fold increase in P47 protein after 7 days that was accompanied by an increase in translatable P47 mRNA. The induction of P47 by retinoic acid preceded cessation of cell proliferation and development of the capacity to reduce Nitro Blue Tetrazolium, indicating that its expression is an early event in the myeloid differentiation of HL-60 cells.  相似文献   

6.
In previously published studies (Kreutter, D., Caldwell, A. B., and Morin, M. J. (1985) J. Biol. Chem. 260, 5979-5984), we demonstrated that the activation of the calcium- and phospholipid-dependent protein kinase C by phorbol esters was dissociable from the induction of monocytic differentiation by these agents in HL-60 promyelocytic leukemia cells. We have now compared the effects of two related diterpenes (mezerein and 12-O-tetradecanoylphorbol-13-acetate) and two cell-permeable diacylglycerols (1-oleoyl-2-acetoylglycerol and 1,2-dioctanoylglycerol) on the induction of differentiation in HL-60 cells. Each of these agents activated protein kinase C in vitro and stimulated the phosphorylation of a number of identical proteins in intact HL-60 cells. Exposure to either of the diterpenes at nanomolar concentrations resulted in an inhibition of cell growth and the induction of qualitatively distinct types of monocytic maturation in HL-60 cells. Conversely, neither of the two diacylglycerols was found to be a potent or efficacious inducer of differentiation, as measured by increases in cell adhesion, nonspecific esterase activity, or phagocytosis, even at growth-inhibitory concentrations. However, concurrent exposure of HL-60 cells to both 1,2-dioctanoylglycerol and the calcium ionophore A23187, at concentrations which were without maturational activity when used separately, resulted in measurable increases in both protein phosphorylation and in the fraction of cells expressing a differentiated phenotype. Taken together, these results suggest that specific biochemical effects associated with 12-O-tetradecanoylphorbol-13-acetate, in addition to the activation of protein kinase C, may be important determinants for the induction of leukemia cell differentiation.  相似文献   

7.
Differentiation of the human promyelocytic leukemia cell line HL-60 into monocytes or macrophages is associated with increased expression of cell surface insulin receptors, while differentiation of these cells into granulocytes is associated with receptor loss. Here we demonstrate that differentiation of HL-60 cells into monocytes or granulocytes induced by 1;25(OH)2vitD3 or Bt2cAMP, respectively, has no major effect on the specific activity of the insulin receptor kinase (IRK). By contrast, when HL-60 cells are incubated with a combination of 1;25(OH)2vitD3 and Bt2cAMP, their differentiation into adherent macrophages-like cells is accompanied by a 50% reduction in the specific activity of IRK. These findings suggest that acquisition or loss of insulin receptors during differentiation of HL-60 involves selective alterations in the functional aspects of these receptors. Our results also implicate the generation of specific regulatory signals that inhibit IRK activity when HL-60 cells are stimulated with a combination of 1;25(OH)2vitD3 and Bt2cAMP.  相似文献   

8.
9.
Exposure of HL-60 leukemia cells to either 12-O-tetradecanoylphorbol-13-acetate (TPA), dimethylsulfoxide (DMSO), exogenous gangliosides GM3, GM1, or bovine brain ganglioside mixture (BBG) resulted in a marked inhibition of the growth of cells. The order of the inhibitory potency was TPA greater than GM3 greater than DMSO greater than BBG greater than GM1. In contrast, sulfatides were without effect on cellular replication. Treatment of HL-60 cells with TPA or GM3 induced differentiation along the monocyte/macrophage lineage, while treatment with DMSO induced maturation along the granulocytic pathway. These effects were accompanied by more than a twofold increase in protein kinase C (PKC) activity. In contrast, treatment with GM1, BBG, or sulfatides caused only a relatively small increase in PKC activity. The activity of CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase (ST1), a key enzyme for membrane gangliosides synthesis, in HL-60 cells was also influenced by the exposure to TPA, GM3, DMSO, GM1, or sulfatides. The inducers of differentiation, TPA and DMSO, caused an increase in ST1 activity, whereas GM3, which also induced cellular differentiation, inhibited ST1 activity, perhaps through the action of end-product inhibition. The non-inducers of differentiation, GM1 and sulfatides, also increased the activity of ST1, but to a much lesser extent. The findings suggest that the direct or indirect modulation of PKC activity by some of these agents may be involved, at least in part, in the regulation of cellular growth and differentiation. Furthermore, it is conceivable that differences in PKC activity may be responsible for the changes in ST1 activity associated with cell differentiation and proliferation.  相似文献   

10.
After differentiation induction in HL-60 cells by treatment with retinoic acid, phorbol ester, or dimethyl sulfoxide strong downregulation of the steady state mRNA level of the putative protein No. 3 of the large ribosomal subunit (rpL3) was observed. Downregulation was also observed in other hemopoietic human cell lines, although to a lesser extent. Four ribosomal protein mRNAs were compared in their degree of downregulation after differentiation induction or actinomycin D treatment. The comparatively fast response of rpL3 mRNA observed could indicate a regulatory function of rpL3 protein.  相似文献   

11.
This investigation provides evidence that a 60-Hz electromagnetic field (EMF) at 1 gauss (G) can drive differentiation of cultured hematopoietic progenitor cells. HL-60 cells are known to differentiate from a nonphagocytic suspension culture to an attached fibroblast-like culture with high phagocytic activity in the presence of the tumor-promoting phorbol ester 12-O-tetradecanoylphorbal-13-acetate (TPA). The effect of 60-Hz EMF at 1 G on differentiation is approximately equivalent to treatment of the cells with 250-500 pg/ml TPA. Furthermore, the effect of both EMF and TPA treatment on differentiation is additive at low TPA concentrations. The results strongly suggest similarities between the effects of TPA treatment and EMF exposure and thus provide an approach for tracing the origins of the molecular effects of EMF exposure, as many transduction pathways in the differentiative process are defined.  相似文献   

12.
The cell-surface proteins of HL-60 human promyelocytic leukemia cells have been compared to those of normal human neutrophils. Proteins of HL-60 cells surface labeled with 125I differed markedly from those of normal neutrophils, as shown by immunoprecipitation and polyacrylamide electrophoresis. Differentiation of HL-60 cells by treatment with dimethylformamide, trans-retinoic acid, or 12-O-tetradecanoylphorbol acetate did not modify the predominant surface-labeled proteins of HL-60 cells to produce a pattern similar to that of normal, mature neutrophils. However, the agents did induce greater quantities of minor cell-surface proteins immunoprecipitated by hyperimmune anti-human neutrophil serum. These immunoprecipitated proteins resembled several of the surface-labeled polypeptides of normal human neutrophils.  相似文献   

13.
14.
We have previously shown that HL-60 cells treated with 1 alpha, 25-(OH)2D3 in magnesium-deficient medium are committed to differentiate but do not express differentiation-related phenotypes. In the present study, we demonstrated that Mg2+ deprivation blocked the process of differentiation before the induction of lysozyme mRNA and that the process of HL-60 cell differentiation could be divided into two steps, i.e., a commitment step and a phenotypic expression step. We studied the effects of protein kinase A (PKA) and calcium/phospholipid-dependent protein kinase (PKC) modulators at each step. The results indicated that agonists of PKA enhanced both steps but that N-(2-[methylamino]ethyl-5-isoquinolinesulfonamide inhibited them. On the other hand, 1-oleyl-2-acetylglycerol and 12-O-tetradecanoylphorbol-13-acetate enhanced the commitment step but inhibited that of phenotypic expression. Staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine inhibited the commitment step and enhanced that of phenotypic expression. These results indicate that PKA acts as a positive regulatory signal and that PKC has a dual role in the process of HL-60 cell differentiation, i.e., as a positive regulatory signal in the commitment step and as a negative one in the phenotypic expression step. Recently, we have also shown that in K-562 cell differentiation into erythroid lineage, PKA may serve as a negative regulatory signal in both steps; however, PKC may act dually, namely as a negative regulatory signal in the commitment step and as a positive one in the phenotypic expression step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

17.
We previously demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as oxidative stress, ionizing radiation and TNF-receptor-induced ligand (TRAIL) compared with vector-transfected (HL-60/Vect) cells. Here, we show that HL-60/FAK cells are highly resistant to all-trans retinoic acid (ATRA)-induced differentiation, whereas original HL-60 or HL-60/Vect cells are sensitive. Treatment with ATRA at 1 muM for 5 days markedly inhibited the proliferation and increased the expression of differentiation markers (CD38, CD11b) in HL-60/Vect cells, but showed no such effect in HL-60/FAK cells. Electrophoretic mobility shift assay (EMSA) using an oligonucleotide for the c/EBP consensus binding sequence showed that c/EBPalpha was activated in ATRA-treated HL-60/Vect cells but not in HL-60/FAK cells, indicating that c/EBPalpha activation by ATRA was impaired in HL-60/FAK cells. In addition, the association of retinoblastoma protein (pRb) and c/EBPalpha after treatment with ATRA was seen in HL-60/Vect cells but not in HL-60/FAK cells. Further, hyperphosphorylation of pRb was observed in HL-60/FAK cells. Finally, the introduction of FAK siRNA into HL-60/FAK cells resulted in the recovery of sensitivity to ATRA-induced differentiation, confirming that the inhibition of HL-60/FAK differentiation resulted from both the induction of pRb hyperphosphorylation and the inhibition of association of pRb and c/EBPalpha.  相似文献   

18.
The quaternary benzo[c]phenanthridine alkaloid chelerythrine is widely used as an inhibitor of protein kinase C (PKC). However, in biological systems chelerythrine interacts with an array of proteins. In this study, we examined the effects of chelerythrine and sanguinarine on conventional PKCs (cPKCs) and PKC upstream kinase, phosphoinositide-dependent protein kinase 1 (PDK1), under complete inhibition conditions of PKC-dependent oxidative burst. In neutrophil-like HL-60 cells, sanguinarine and chelerythrine inhibited N-formyl-Met-Leu-Phe, phorbol 12-myristate 13-acetate (PMA)-, and A23187-induced oxidative burst with IC50 values not exceeding 4.6 μmol/L, but the inhibition of PMA-stimulated cPKC activity in intact cells required at least fivefold higher alkaloid concentrations. At concentrations below 10 μmol/L, sanguinarine and chelerythrine prevented phosphorylation of ∼80 kDa protein and sequestered ∼60 kDa phosphoprotein in cytosol. Moreover, neither sanguinarine nor chelerythrine impaired PMA-stimulated translocation of autophosphorylated PKCα/βII isoenzymes, but both alkaloids induced dephosphorylation of the turn motif in PKCα/βII. The dephosphorylation did not occur in unstimulated cells and it was not accompanied by PKC degradation. Furthermore, cell treatment with sanguinarine or chelerythrine resulted in phosphorylation of ∼70 kDa protein by PDK1. We conclude that PKC-dependent cellular events are affected by chelerythrine primarily by multiple protein interactions rather than by inhibition of PKC activity.  相似文献   

19.
HL-60 cells are an attractive model for studies of human myeloid cell differentiation. Among the well-examined parameters correlated to differentiation of HL-60 cells are the expression and phosphorylation of the small heat shock protein Hsp27. Here we demonstrate that PMA treatment of HL-60 cells stimulates different MAP kinase cascades, leading to significant activation of ERK2 and p38 reactivating kinase (p38RK). Using the protein kinase inhibitor SB 203580, we specifically inhibited p38RK and, thereby, activation of its target MAP kinase-activated protein kinase 2(MAPKAP kinase 2), which is the major enzyme responsible for small Hsp phosphorylation. As a result, PMA-induced Hsp27 phosphorylation is inhibited in SB 203580-treated HL-60 cells indicating that p38RK and MAPKAP kinase 2 are components of the PMA-induced signal transduction pathway leading to Hsp27 phosphorylation. We further demonstrate that, although PMA-induced phosphorylation is inhibited, SB 203580-treated HL-60 cells are still able to differentiate to the macrophage-like phenotype as judged by decrease in cell proliferation, induction of expression of the cell surface antigen CD11b and changes in cell morphology. These results indicate that, although correlated, Hsp27 phosphorylation is not required for HL-60 cell differentiation. However, the results do not exclude that increased Hsp27 expression is involved in HL-60 cell differentiation.  相似文献   

20.
Our previous studies have shown that quercetin inhibits Cox-2 and Bcl-2 expressions, and induces human leukemia HL-60 cell apoptosis. In order to investigate the role of AMP-activated protein kinase (AMPK) on quercetin- induced apoptosis of HL-60 cells, we used flow cytometry to detect cell apoptosis. The expressions of LKB1, phosphorylated AMPK (p-AMPK), and Cox-2 protein were detected in HL-60 cells and normal peripheral blood mono-nuclear cells (PBMCs) by western blot. The expressions of LKB1, p-AMPK, and Cox-2 were detected in HL-60 cells after culture with quercetin. The expressions of p-AMPK were detected in HL-60 cells after culture with AMPK inhibitor Compound C. Then, the expressions of LKB1, p-AMPK, and Cox-2 were detected in HL-60 cells after culture with quercetin alone or quercetin + Compound C. It was found that there was no significant difference in LKB1 between PBMCs and HL-60. p-AMPK in PBMCs was higher than that in HL-60, while Cox-2 was lower. After culture of HL-60 with quercetin, p-AMPK was increased, Cox-2 was decreased, but LKB1 remained unchanged. After culture of HL-60 with Compound C, p-AMPK was decreased. There was no significant differ- ence in LKB1 between the quercetin-alone and the quercetin + Compound C groups, p-AMPK decreased more significantly, while Cox-2 increased more significant- ly in the quercetin + Compound C groups than those in the quercetin-alone groups. Taken together, these findings suggested that quercetin activates AMPK expression in HL-60 cells independent of LKB1 activation, inhibits Cox-2 expression by activating AMPK, and further regulates the Bcl-2-dependent pathways of apoptosis to exert its anti-leukemia effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号