首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activities catalyzing the synthesis of fructose-2,6-bisphosphate (fructose-6-phosphate,2-kinase or Fru-6-P,2K) and its breakdown (fructose-2,6-bisphosphatase or Fru-2,6-P2ase) were identified in leaves of corn (Zea mays), a C4 plant. Fru-6-P,2K and Fru-2,6-P2ase were both localized mainly, if not entirely, in the leaf mesophyll cells. A partially purified preparation containing the two activities revealed that the kinase and phosphatase were regulated by metabolite effectors in a manner generally similar to their counterparts in C3 species. Thus, corn Fru-6-P,2K was activated by inorganic phosphate (Pi) and fructose-6-phosphate, and was inhibited by 3-phosphoglycerate and dihydroxyacetone phosphate. Fru-2,6-P2ase was inhibited by its products, fructose-6-phosphate and Pi. However, unlike its spinach equivalent, corn Fru-2,6-P2ase was also inhibited by 3-phosphoglycerate and, less effectively, by dihydroxyacetone phosphate. The C4 Fru-6-P,2K and Fru-2,6-P2ase were also quite sensitive to inhibition by phosphoenolpyruvate, and each enzyme was also selectively inhibited by certain other metabolites.  相似文献   

2.
3.
β-d-Fructose-2,6-bisphosphate (Fru-2,6-P2) is an important regulator of eukaryotic glucose homeostasis, functioning as a potent activator of 6-phosphofructo-1-kinase and inhibitor of fructose-1,6-bisphosphatase. Pharmaceutical manipulation of intracellular Fru-2,6-P2 levels, therefore, is of interest for the treatment of certain diseases, including diabetes and cancer. [2-32P]Fru-2,6-P2 has been the reagent of choice for studying the metabolism of this effector molecule; however, its short half-life necessitates frequent preparation. Here we describe a convenient, economical, one-pot enzymatic preparation of high-specific-activity tritium-labeled Fru-2,6-P2. The preparation involves conversion of readily available, carrier-free d-[6,6′-3H]glucose to [6,6′-3H]Fru-2,6-P2 using hexokinase, glucose-6-phosphate isomerase, and 6-phosphofructo-2-kinase. The key reagent in this preparation, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from human liver, was produced recombinantly in Escherichia coli and purified in a single step using an appendant C-terminal hexa-His affinity tag. Following purification by anion exchange chromatography using triethylammonium bicarbonate as eluant, radiochemically pure [6,6′-3H]Fru-2,6-P2 having a specific activity of 50 Ci/mmol was obtained in yields averaging 35%. [6,6′-3H]Fru-2,6-P2 serves as a stable, high-specific-activity substrate in a facile assay capable of detecting fructose-2,6-bisphosphatase in the range of 10−14 to 10−15 mol, and it should prove to be useful in many studies of the metabolism of this important biofactor.  相似文献   

4.
Scott P  Lange AJ  Kruger NJ 《Planta》2000,211(6):864-873
The aim of this work was to examine the role of fructose 2,6-bisphosphate (Fru-2,6-P2) in photosynthetic carbon partitioning. The amount of Fru-2,6-P2 in leaves of tobacco (Nicotiana tabacum L. cv. Samsun) was reduced by introduction of a modified mammalian gene encoding a functional fructose-2,6-bisphosphatase (EC 3.1.3.46). Expression of this gene in transgenic plants reduced the Fru-2,6-P2 content of darkened leaves to between 54% and 80% of that in untransformed plants. During the first 30 min of photosynthesis sucrose accumulated more rapidly in the transgenic lines than in the untransformed plants, whereas starch production was slower in the transgenic plants. On illumination, the proportion of 14CO2 converted to sucrose was greater in leaf disks of transgenic lines possessing reduced amounts of Fru-2,6-P2 than in those of the control plants, and there was a corresponding decrease in the proportion of carbon assimilated to starch in the transgenic lines. Furthermore, plants with smaller amounts of Fru-2,6-P2 had lower rates of net CO2 assimilation. In illuminated leaves, decreasing the amount of Fru-2,6-P2 resulted in greater amounts of hexose phosphates, but smaller amounts of 3-phosphoglycerate and dihydroxyacetone phosphate. These differences are interpreted in terms of decreased inhibition of cytosolic fructose-1,6-bisphosphatase resulting from the lowered Fru-2,6-P2 content. The data provide direct evidence for the importance of Fru-2,6-P2 in co-ordinating chloroplastic and cytosolic carbohydrate metabolism in leaves in the light. Received: 8 February 2000 / Accepted: 25 April 2000  相似文献   

5.
Studies on the entry of fructose-2,6-bisphosphate into chloroplasts   总被引:13,自引:2,他引:11       下载免费PDF全文
The regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2) has an important function in controlling the intermediary carbon metabolism of leaves. Fru-2,6-P2 controls two cytosolic enzymes involved in the interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate (fructose-1,6-bisphosphatase and pyrophosphate, fructose-6-phosphate 1-phosphotransferase) and thereby controls the partitioning of photosynthate between sucrose and starch. It has been demonstrated that Fru-2,6-P2 is present mainly in the cytosol. Here we present evidence that Fru-2,6-P2 can be taken up by isolated intact chloroplasts but at a very slow rate (about 0.01 micromoles per milligram of chlorophyll per hour). This uptake is time and concentration dependent and is inhibited by PPi. When provided a physiological concentration of Fru-2,6-P2 (10 micromolar), chloroplasts accumulated up to 0.6 micromolar Fru-2,6-P2 in the stroma. Elevated plastid Fru-2,6-P2 levels had no effect on overall photosynthetic rates of isolated chloroplasts. The results indicate that, while Fru-2,6-P2 enters isolated chloroplasts at a sluggish rate, caution should be exercised in ascribing physiological importance to effects of Fru-2,6-P2 on chloroplast enzymes.  相似文献   

6.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

7.
Fructose 2,6-bisphosphate (Fru-2,6-P2) is an important metabolite that controls glycolytic and gluconeogenic pathways in several cell types. Its synthesis and degradation are catalyzed by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2). Four genes, designated Pfkfb1-4, codify the different PFK-2 isozymes. The Pfkfb3 gene product, ubiquitous PFK-2 (uPFK-2), has the highest kinase/bisphosphatase activity ratio and is associated with proliferation and tumor metabolism. A transgenic mouse model that overexpresses uPFK-2 under the control of the phosphoenolpyruvate carboxykinase promoter was designed to promote sustained and elevated Fru-2,6-P2 levels in the liver. Our results demonstrate that in diet-induced obesity, high Fru-2,6-P2 levels in transgenic livers caused changes in hepatic gene expression profiles for key gluconeogenic and lipogenic enzymes, as well as an accumulation of lipids in periportal cells, and weight gain.  相似文献   

8.
The aim of this work was to examine the possibility that fructose 2,6-bisphosphate (Fru-2,6-P2) plays a role in the regulation of gluconeogenesis from fat. Fru-2,6-P2 is known to inhibit cytoplasmic fructose 1,6-bisphosphatase and stimulate pyrophosphate:fructose 6-phosphate phosphotransferase from the endosperm of seedlings of castor bean (Ricinus communis). Fru-2,6-P2 was present throughout the seven-day period in amounts from 30 to 200 picomoles per endosperm. Inhibition of gluconeogenesis by anoxia or treatment with 3-mercaptopicolinic acid doubled the amount of Fru-2,6-P2 in detached endosperm. The maximum activities of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase (enzymes that synthesize and degrade Fru-2,6-P2, respectively) were sufficient to account for the highest observed rates of Fru-2,6-P2 metabolism. Fructose 6-phosphate,2-kinase exhibited sigmoid kinetics with respect to fructose 6-phosphate. These kinetics became hyperbolic in the presence of inorganic phosphate, which also relieved a strong inhibition of the enzyme by 3-phosphoglycerate. Fructose 2,6-bisphosphatase was inhibited by both phosphate and fructose 6-phosphate, the products of the reaction. The properties of the two enzymes suggest that in vivo the amounts of fructose-6-phosphate, 3-phosphoglycerate, and phosphate could each contribute to the control of Fru-2,6-P2 level. Variation in the level of Fru-2,6-P2 in response to changes in the levels of these metabolites is considered to be important in regulating flux between fructose 1,6-bisphosphate and fructose 6-phosphate during germination.  相似文献   

9.
The regulatory properties of citrate on the activity of phosphofructokinase (PFK) purified from rat-kidney cortex has been studied. Citrate produces increases in the K0.5 for Fru-6-P and in the Hill coefficient as well as a decrease in the Vmax of the reaction without affecting the kinetic parameters for ATP as substrate. ATP potentiates synergistically the effects of citrate as an inhibitor of the enzyme. Fru-2,6-P2 and AMP at concentrations equal to Ka were not able to completely prevent citrate inhibition of the enzyme. Physiological concentrations of ATP and citrate produce a strong inhibition of renal PFK suggesting that may participate in the control of glycolysisin vivo.Abbreviations PFK 6-Phosphofructo-1-kinase (EC 2.7.1.11) - Fru-6-P Fructose 6-phosphate - Fru-2,6-P2 Fructose 2,6-bisphosphate  相似文献   

10.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

11.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P2), a signalling molecule that controls the balance between glycolysis and gluconeogenesis in several cell types. Four genes, designated Pfkfb1-4, code several PFK-2 isozymes that differ in their kinetic properties, molecular masses, and regulation by protein kinases. In rat tissues, Pfkfb3 gene accounts for eight splice variants and two of them, ubiquitous and inducible PFK-2 isozymes, have been extensively studied and related to cell proliferation and tumour metabolism. Here, we characterize a new kidney- and liver-specific Pfkfb3 isozyme, a product of the RB2K3 splice variant, and demonstrate that its expression, in primary cultured hepatocytes, depends on hepatic cell proliferation and dedifferentiation. In parallel, our results provide further evidence that ubiquitous PFK-2 is a crucial isozyme in supporting growing and proliferant cell metabolism.  相似文献   

12.
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.  相似文献   

13.
Carbohydrate metabolism in mussels shows two phases separated seasonally. During summer and linked to food supply, carbohydrates, mainly glycogen, are accumulated in the mantle tissue. During winter, mantle glycogen decreases concomitantly with an increase in triglyceride synthesis. In spring, after spawning, the animals go in to metabolic rest until the beginning of a new cycle. This cycle is regulated by the futile cycle of fructose phosphate that implicates PFK-1 and FBPase-1 activities. These enzymes and the bifunctional PFK-2/FBPase-2 that regulates the Fru-2,6-P2 levels, are seasonally modulated by covalent phosphorylation/dephosphorylation mechanisms, as a response to unknown factors. The futile cycle of the fructose phosphates also controls the transition from physiological aerobiosis to hypoxia. The process is independent of the phosphorylation state. In this sense, a pH decrease triggers a small Pasteur effect during the first 24 h of aerial exposure. Variations in the concentration of Fru-2,6-P2 and AMP are the sole factor responsible for this effect. Longer periods of hypoxia induce a metabolic depression characterized by a decrease in Fru-2,6-P2 which is hydrolyzed by drop in the pH. In this review, the authors speculate on the two regulation processes.  相似文献   

14.
Theodorou ME  Kruger NJ 《Planta》2001,213(1):147-157
A major problem in defining the physiological role of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) is the 1,000-fold discrepancy between the apparent affinity of PFP for its activator, fructose 2,6-bisphosphate (Fru-2,6-P2), determined under optimum conditions in vitro and the estimated concentration of this signal metabolite in vivo. The aim of this study was to investigate the combined influence of metabolic intermediates and inorganic phosphate (Pi) on the activation of PFP by Fru-2,6-P2. The enzyme was purified to near-homogeneity from leaves of spinach (Spinacia oleracea L.). Under optimal in vitro assay conditions, the activation constant (K a) of spinach leaf PFP for Fru-2,6-P2 in the glycolytic direction was 15.8 nM. However, in the presence of physiological concentrations of fructose 6-phosphate, inorganic pyrophosphate (PPi), 3-phosphoglycerate (3PGA), phosphoenolpyruvate (PEP), ATP and Pi the K a of spinach leaf PFP for Fru-2,6-P2 was up to 2000-fold greater than that measured in the optimised assay and V max decreased by up to 62%. Similar effects were observed with PFP purified from potato (Solanum tuberosum L.) tubers. Cytosolic metabolites and Pi also influenced the response of PFP to activation by its substrate fructose 1,6-bisphosphate (Fru-1,6-P2). When assayed under optimum conditions in the gluconeogenic direction, the K a of spinach leaf PFP for Fru-1,6-P2 was approximately 50 μM. Physiological concentrations of PPi, 3PGA, PEP, ATP and Pi increased K a up to 25-fold, and decreased V max by over 65%. From these results it was concluded that physiological concentrations of metabolites and Pi increase the K a of PFP for Fru-2,6-P2 to values approaching the concentration of the activator in vivo. Hence, measured changes in cytosolic Fru-2,6-P2 levels could appreciably alter the activation state of PFP in vivo. Moreover, the same levels of metabolites increase the K a of PFP for Fru-1,6-P2 to an extent that activation of PFP by this compound is unlikely to be physiologically relevant. Received: 21 July 2000 / Accepted: 15 September 2000  相似文献   

15.
Fernie AR  Roscher A  Ratcliffe RG  Kruger NJ 《Planta》2001,212(2):250-263
The aim of this work was to establish the influence of fructose 2,6-bisphosphate (Fru-2,6-P2) on non-photosynthetic carbohydrate metabolism in plants. Heterotrophic callus lines exhibiting elevated levels of Fru-2,6-P2 were generated from transgenic tobacco (Nicotiana tabacum L.) plants expressing a modified rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Lines containing increased amounts of Fru-2,6-P2 had lower levels of hexose phosphates and higher levels of 3-phosphoglycerate than the untransformed control cultures. There was also a greater redistribution of label into the C6 position of sucrose and fructose, following incubation with [1-13C]glucose, in the lines possessing the highest amounts of Fru-2,6-P2, indicating a greater re-synthesis of hexose phosphates from triose phosphates in these lines. Despite these changes, there were no marked differences between lines in the metabolism of 14C-substrates, the rate of oxygen uptake, carbohydrate accumulation or nucleotide pool sizes. These data provide direct evidence that physiologically relevant changes in the level of Fru-2,6-P2 can affect pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) activity in vivo, and are consistent with PFP operating in a net glycolytic direction in the heterotrophic culture. However, the results also show that activating PFP has little direct effect on heterotrophic carbohydrate metabolism beyond increasing the rate of cycling between hexose phosphates and triose phosphates. Received: 29 March 2000 / Accepted: 13 June 2000  相似文献   

16.
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.  相似文献   

17.
  • 1.1. Thiamin deprived Euglena cells contained twice as high a concentration of Fru-2,6-P2 in sufficient cells and the rate of the uptake of glucose from the medium was twice as great as that found in sufficient cells, indicating that Fru-2,6-P2 is responsible for the glycolysis.
  • 2.2. Moreover, incubation of thiamin deprived cells with increasing thiamin concentrations caused a decrease of Fru-2,6-P2. The activity of Fru-6-P, 2-kinase was affected by thiamin and the activity of PFK-2 in thiamin deprived cells was 2.3 times greater than that observed in sufficient cells.
  • 3.3. Incubating thiamin-deficient cells in a thiamin-containing medium, the activity of Fru-6-P, 2-kinase decreased rapidly and became the same activity as that found in thiamin sufficient cells.
  • 4.4. In contrast, the two thiamin dependent 2-OGDC and PNOR activities showed a reverse relationship, being higher in thiamin-sufficient cells and lower in thiamin deficient cells.
  • 5.5. We concluded that the carbohydrate metabolism of Euglena is regulated by Fru-2,6-P2 through an intracellular concentration of thiamin based on the present evidence.
  相似文献   

18.
Summary A new activator of phosphofructokinase, which is bound to the enzyme and released during its purification, has been discovered. Its structure has been determined as -D Fructose-2,6-P2 by chemical synthesis, analysis of various degradation products and NMR. D-Fructose-2,6-P2 is the most potent activator of phosphofructokinase and relieves inhibition of the enzyme by ATP and citrate. It lowers the Km for fructose-6-P from 6 mM to 0.1 mM.Fructose-6-P,2-kinase catalyzes the synthesis of fructose-2,6-P2 from fructose-6-P and ATP, and the enzyme has been partially purified. The degradation of fructose-2,6-P2 is catalyzed by fructose-2,6-bisphosphatase. Thus a metabolic cycle could occur between fructose-6-P and fructose-2,6-P2, which are catalyzed by these two opposing enzymes. The activities of these enzymes can be controlled by phosphorylation. Fructose-6-P,2-kinase is inactivated by phosphorylation catalyzed by either cAMP dependent protein kinase or phosphorylase kinase. The inactive, phospho-fructose-6-P,2-kinase is activated by dephosphorylation catalyzed by phosphorylase phosphatase. On the other hand, fructose-2,6-bisphosphatase is activated by phosphorylation catalyzed by cAMP dependent protein kinase.Investigation into the hormonal regulation of phosphofructokinase reveals that glucagon stimulates phosphorylation of phosphofructokinase which results in decreased affinity for fructose-2,6-P2, and decreases the fructose-2,6-P2 levels. This decreased level in fructose-2,6-P2 appears to be due to the decreased synthesis by inactivation of fructose-2,6-P2,2-kinase and increased degradation as a result of activation of fructose-2,6-bisphosphatase. Such a reciprocal change in these two enzymes has been demonstrated in the hepatocytes treated by glucagon and epinephrine. The implications of these observations in respect to possible coordinated controls of glycolysis and glycogen metabolism are discussed.  相似文献   

19.
20.
Modulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P(2)ase) gene expression by diet composition and ration size was studied in the liver of gilthead sea bream, Sparus aurata. From five different types of diet supplied to fish, those with either high carbohydrate/low protein or high carbohydrate/low lipid content stimulated 6PF-2-K/Fru-2,6-P(2)ase expression at the levels of mRNA, immunodetectable protein and kinase activity as well as promoting higher fructose-2,6-bisphosphate (Fru-2,6-P(2)) values. The expression of the bifunctional enzyme and Fru-2,6-P(2) levels showed also direct dependence on the quantity of diet supplied. These findings demonstrate for the first time nutritional regulation of 6PF-2-K/Fru-2,6-P(2)ase at mRNA level by diet composition and ration size and suggest that the carnivorous fish S. aurata can adapt its metabolism, by stimulation of liver glycolysis, to partial substitution of protein by carbohydrate in the diet. In addition, the expression of 6PF-2-K/Fru-2,6-P(2)ase can be used as an indicator of nutritional condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号