首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Misawa S  Kumagai I 《Biopolymers》1999,51(4):297-307
Overexpression of cloned or synthetic genes in Escherichia coli often results in the formation of insoluble protein inclusion bodies. Within the last decade, specific methods and strategies have been developed for preparing active recombinant proteins from these inclusion bodies. Usually, the inclusion bodies can be separated easily from other cell components by centrifugation, solubilized by denaturants such as guanidine hydrochloride (Gdn-HCl) or urea, and then renatured through a refolding process such as dilution or dialysis. Recent improvements in renaturation procedures have included the inhibition of aggregation during refolding by application of low molecular weight additives and matrix-bound renaturation. These methods have made it possible to obtain high yields of biologically active proteins by taking into account process parameters such as protein concentration, redox conditions, temperature, pH, and ionic strength.  相似文献   

2.
Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF‐1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale‐up using hen egg‐white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell‐based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body‐derived protein products. Biotechnol. Bioeng. 2009;103: 329–340. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
包含体蛋白质的复性研究进展   总被引:20,自引:0,他引:20  
包含体的形成是异源蛋白质在大肠杆菌中高效表达的必然结果,也是目前产生重组蛋白质最有效的方法之一。不可溶、无生物活性的包含体必须经过变性、复性才能获得天然结构,完整特定的生物学功能。聚集是造成重组蛋白质复性产率低下的主要因素,因此理解蛋白质聚集机制,减少和防止聚集的发生是建立高效、高产率复性方法的关键。分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。  相似文献   

4.
Practical considerations in refolding proteins from inclusion bodies   总被引:13,自引:0,他引:13  
Refolding of proteins from inclusion bodies is affected by several factors, including solubilization of inclusion bodies by denaturants, removal of the denaturant, and assistance of refolding by small molecule additives. We will review key parameters associated with (1) conformation of the protein solubilized from inclusion bodies, (2) change in conformation and flexibility or solubility of proteins during refolding upon reduction of denaturant concentration, and (3) the effect of small molecule additives on refolding and aggregation of the proteins.  相似文献   

5.
Over-expression of heterologous proteins in Escherichia coli is commonly hindered by the formation of inclusion bodies. Nevertheless, refolding of proteins in vitro has become an essential requirement in the development of structural genomics (proteomics) and as a means of recovering functional proteins from inclusion bodies. Many distinct methods for protein refolding are now in use. However, regardless of method used, developing a reliable protein refolding protocol still requires significant optimization through trial and error. Many proteins fall into the category of "Challenging" or "Difficult to Express" and are problematic to refold using traditional chaotrope-based refolding techniques. This review discusses new methods for improving protein refolding, such as implementing high hydrostatic pressure, using small molecule additives to enhance traditional protein refolding strategies, as well as developing practical methods for performing refolding studies to maximize their reliability and utility. The strategies examined here focus on high-throughput, automated refolding screens, which can be applied to structural genomic projects.  相似文献   

6.
Protein refolding is an important process to recover active recombinant proteins from inclusion bodies. Refolding by simple dilution, dialysis and on-column refolding methods are the most common techniques reported in the literature. However, the refolding process is time-consuming and laborious due to the variability of the behavior of each protein and requires a great deal of trial-and-error to achieve success. Hence, there is a need for automation to make the whole process as convenient as possible. In this study, we invented an automatic apparatus that integrated three refolding techniques: varying dilution, dialysis and on-column refolding. We demonstrated the effectiveness of this technology by varying the flow rates of the dilution buffer into the denatured protein and testing different refolding methods. We carried out different refolding methods on this apparatus: a combination of dilution and dialysis for human stromal cell-derived factor 1 (SDF-1/CXCL12) and thioredoxin fused-human artemin protein (Trx-ARTN); dilution refolding for thioredoxin fused-human insulin-like growth factor I protein (Trx-IGF1) and enhanced fluorescent protein (EGFP); and on-column refolding for bovine serum albumin (BSA). The protein refolding processes of these five proteins were preliminarily optimized using the slowly descending denaturants (or additives) method. Using this strategy of decreasing denaturants concentration, the efficiency of protein refolding was found to produce higher quantities of native protein. The standard refolding apparatus configuration can support different operations for different applications; it is not limited to simple dilution, dialysis and on-column refolding techniques. Refolding by slowly decreasing denaturants concentration, followed by concentration or purification on-column, may be a useful strategy for rapid and efficient recovery of active proteins from inclusion bodies. An automatic refolding apparatus employing this flexible strategy may provide a powerful tool for preparative scale protein production.  相似文献   

7.
Protein refolding is a crucial step for the production of therapeutic proteins expressed in bacteria as inclusion bodies. In vitro protein refolding is severely impeded by the aggregation of folding intermediates during the folding process, so inhibition of the aggregation is the most effective approach to high‐efficiency protein refolding. We have herein found that electrostatic repulsion between like‐charged protein and ion exchange gel beads can greatly suppress the aggregation of folding intermediates, leading to the significant increase of native protein recovery. This finding is extensively demonstrated with three different proteins and four kinds of ion‐exchange resins when the protein and ion‐exchange gel are either positively or negatively charged at the refolding conditions. It is remarkable that the enhancing effect is significant at very high protein concentrations, such as 4 mg/mL lysozyme (positively charged) and 2 mg/mL bovine serum albumin (negatively charged). Moreover, the folding kinetics is not compromised by the presence of the resins, so fast protein refolding is realized at high protein concentrations. It was not realistic by any other approaches. The working mechanism of the like‐charged resin is considered due to the charge repulsion that could induce oriented alignment of protein molecules near the charged surface, leading to the inhibition of protein aggregation. The molecular crowding effect induced by the charge repulsion may also contribute to accelerating protein folding. The refolding method with like‐charged ion exchangers is simple to perform, and the key material is easy to separate for recycling. Moreover, because ion exchangers can work as adsorbents of oppositely charged impurities, an operation of simultaneous protein refolding and purification is possible. All the characters are desirable for preparative refolding of therapeutic proteins expressed in bacteria as inclusion bodies. Bioeng. 2011; 108:1068–1077. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Expression as inclusion bodies in Escherichia coli is a widely used method for the large-scale production of therapeutic proteins that do not require post-translational modifications. High expression yields and simple recovery steps of inclusion bodies from the host cells are attractive features industrially. However, the value of an inclusion body-based process is dominated by the solubilization and refolding technologies. Scale-invariant technologies that are economical and applicable for a wide range of proteins are requested by industry. The main challenge is to convert the denatured protein into its native conformation at high yields. Refolding competes with misfolding and aggregation. Thus, the yield of native monomer depends strongly on the initial protein concentrations in the refolding solution. Reasonable yields are attained at low concentrations (≤0.1 mg/mL). However, large buffer tanks and time-consuming concentration steps are required. We attempt to answer the question of the extent to which refolding of proteins is protected by patents. Low-molecular mass additives have been developed to improve refolding yields through the stabilization of the protein in solution and shielding hydrophobic patches. Progress has been made in the field of high-pressure renaturation and on-column refolding. Mixing times of the denatured protein in the refolding buffer have been reduced using newly developed devices and the introduction of specific mixers. Concepts of continuous refolding have been introduced to reduce tank sizes and increase yields. Some of the patents covering refolding of proteins will soon expire or have already expired. This gives more freedom to operate.  相似文献   

9.
Overexpression of recombinant proteins in bacterial systems (such as E. coli) often leads to formation of inactive and insoluble ' inclusion bodies' . Protein refolding refers to folding back the proteins after solubilizing/unfolding the misfolded proteins of the inclusion bodies. Protein aggregation, a concentration dependent phenomenon, competes with refolding pathway. The refolding strategies largely aim at reducing aggregation and/or promoting correct folding. This review focuses on non-chromatographic strategies for refolding like dilution, precipitation, three phase partitioning and macro-(affinity ligand) facilitated three phase partitioning. The nanomaterials which disperse well in aqueous buffers are also discussed in the context of facilitating protein refolding. Apart from general results with these methods, the review also covers the use of non-chromatographic methods in protein refolding in the patented literature beyond 2000. The patented literature generally describes use of cocktail of additives which results in increase in refolding yield. Such additives include low concentration of chaotropic agents, redox systems, ions like SO4(2-) and Cl-, amines, carboxylic acids and surfactants. Some novel approaches like use of a "pressure window" or ionic liquids for refolding and immobilized diselenide compounds for ensuring correct -S-S- bonds pairing have also been discussed in various patents. In most of the patented literature, focus naturally has been on refolding in case of pharmaceutical proteins.  相似文献   

10.
The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.  相似文献   

11.
The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.  相似文献   

12.
Covalent modification of proteins with polyethylene glycol (PEG) has become a well established drug enhancement strategy in the biopharmaceutical industry. The general benefits of PEGylation, such as prolonged serum half-lives or reduced in vivo immunogenicity, are well known. To date, the PEGylation process has been performed with purified proteins, which often requires additional multi-step purification steps to harvest the desired PEGylate. However, it would be beneficial for bioprocessing if 'renaturation,' i.e. in vitro refolding and 'modification,' and PEGylation can be integrated, especially for inclusion body proteins. We investigated the feasibility of protein PEGylation under denaturing conditions and of protein refolding with the attached PEG molecule. Using lipase as a model protein, PEGylation occurred in 8 M urea and covalently attached PEG did not appear to hinder subsequent refolding.  相似文献   

13.
Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between "yield" and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially "screen," in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts.  相似文献   

14.
In laboratories and manufacturing settings, a rapid and inexpensive method for the preparation of a target protein is crucial for promoting resesrach in protein science and engineering. Inclusion-body-based protein production is a promising method because high yields are achieved in the upstream process, although the refolding of solubilized, unfolded proteins in downstream processes often leads to significantly lower yields. The most challenging problem is that the effective condition for refolding is protein dependent and is therefore difficult to select in a rational manner. Accordingly, considerable time and expense using trial-and-error approaches are often needed to increase the final protein yield. Furthermore, for certain target proteins, finding suitable conditions to achieve an adequate yield cannot be obtained by existing methods. Therefore, to convert such a troublesome refolding process into a routine one, a wide array of methods based on novel technologies and materials have been developed. These methods select refolding conditions where productive refolding dominates over unproductive aggregation in competitive refolding reactions. This review focuses on synthetic refolding additives and describes the concepts underlying the development of reported chemical additives or chemical-additive-b  相似文献   

15.
包涵体蛋白体外复性的研究进展   总被引:38,自引:1,他引:38  
方敏  黄华樑   《生物工程学报》2001,17(6):608-612
外源基因在大肠杆菌中高水平表达时 ,通常会形成无活性的蛋白聚集体即包涵体。包涵体富含表达的重组蛋白 ,经分离、变性溶解后须再经过一个合适的复性过程实现变性蛋白的重折叠 ,才能够得到生物活性蛋白。近年来 ,发展了许多特异的策略和方法来从包涵体中复性重组蛋白。最近的进展包括固定化复性以及用一些低分子量的添加剂等来减少复性过程中蛋白质的聚集 ,提高活性蛋白的产率。  相似文献   

16.
Recombinant proteins are often expressed in the form of insoluble inclusion bodies in bacteria. To facilitate refolding of recombinant proteins obtained from inclusion bodies, 0.1 to 1 M arginine is customarily included in solvents used for refolding the proteins by dialysis or dilution. In addition, arginine at higher concentrations, e.g., 0.5-2 M, can be used to extract active, folded proteins from insoluble pellets obtained after lysing Escherichia coli cells. Moreover, arginine increases the yield of proteins secreted to the periplasm, enhances elution of antibodies from Protein-A columns, and stabilizes proteins during storage. All these arginine effects are apparently due to suppression of protein aggregation. Little is known, however, about the mechanism. Various effects of solvent additives on proteins have been attributed to their preferential interaction with the protein, effects on surface tension, or effects on amino acid solubility. The suppression of protein aggregation by arginine cannot be readily explained by either surface tension effects or preferential interactions. In this review we show that interactions between the guanidinium group of arginine and tryptophan side chains may be responsible for suppression of protein aggregation by arginine.  相似文献   

17.
Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide‐bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG‐mono‐sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide‐bridging conjugation to give the PEGylated proteins. Interferon‐β1b (IFN‐β1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging‐conjugation during refolding. The PEG‐IFN‐β1b was isolated by ion‐exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN‐β1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN‐β1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.  相似文献   

18.
Optimized conditions are needed to refold recombinant proteins from bacterial inclusion bodies into their biologically active conformations. In this study, we found two crucial requirements for efficient refolding of cationic tetrameric chicken avidin. The first step is to eliminate nucleic acid contaminants from the bacterial inclusion body. The electrostatic interactions between the remaining nucleic acids and proteins strongly enhanced protein aggregation during the refolding process. The cysteine specific reversible S-cationization procedure was successfully employed for large-scale preparation of nucleic acid free denatured protein without purification tag system. The second step is the intramolecular disulfide formation prior to refolding in dialysis removing denaturant. Disulfide intact monomeric avidin showed efficient formation of biologically active tetrameric conformation during the refolding process. Using this optimized refolding procedure, highly cationic avidin derivative designed as an intracellular delivery carrier of biotinylated protein was successfully prepared.  相似文献   

19.
Baynes BM  Wang DI  Trout BL 《Biochemistry》2005,44(12):4919-4925
The amino acid arginine is frequently used as a solution additive to stabilize proteins against aggregation, especially in the process of protein refolding. Despite arginine's prevalence, the mechanism by which it stabilizes proteins is not presently understood. We propose that arginine deters aggregation by slowing protein-protein association reactions, with only a small concomitant effect on protein folding. The associated rate effect was observed experimentally in association of globular proteins (insulin and a monoclonal anti-insulin) and in refolding of carbonic anhydrase. We suggest that this effect arises because arginine is preferentially excluded from protein-protein encounter complexes but not from dissociated protein molecules. Such an effect is predicted by our gap effect theory [Baynes and Trout (2004) Biophys. J. 87, 1631] for "neutral crowder" additives such as arginine which are significantly larger than water but have only a small effect on the free energies of isolated protein molecules. The effect of arginine on refolding of carbonic anhydrase was also shown to be consistent with this hypothesis.  相似文献   

20.
Eukaryotic proteins expressed inEscherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号