首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared absorption spectra of film specimens of oat coleoptilecell walls, before and after protease treatment and after treatmentfor removal of lipid materials, pectic substances and hemicellulose,were recorded, and the characteristic bands in the spectrumof the wall assigned. Polarization spectrum measurements onthe wall provided evidence indicating that the non-cellulosicpolysaccharide matrix as well as cellulose micronbrils has anoriented structure in the wall and that the oriented structurechanges during extension growth as well as upon mechanical extensionof the walls. (Received July 22, 1977; )  相似文献   

2.
Separation of component polysaccharides in extractable fractions of the noncellulosic matrix of Avena sativa coleoptile cell walls shows that the principal classes of polymers present are glucuronoarabinoxylans (GAX) and iodine-negative hemicellulosic β-glucans. Rhamnogalacturonan is a minor component. GAX contains about 5–10% glucuronic acid and its 4-O-methyl ether, arabinose in amount almost equal to xylose, and a small amount of galactose; some subfractions contained appreciable amounts of glucose and galacturonic acid but these may derive from separate, contaminating polysaccharides. From the sedimentation and diffusion coefficients and intrinsic viscosities of one subfraction each of the GAX and of the hemicellulosic glucan that had been purified to apparent homogeneity by criteria of sedimentation and borate electrophoresis, MWs of about 200 000 were calculated by two methods. The viscosity characteristics and gel-forming ability of the hemicellulosic glucan give evidence of appreciable molecular interactions which suggest that this polymer is an important structural component of the cell wall.  相似文献   

3.
Summary A method is described for measuring the cell wall mechanical properties of Avena coleoptiles in the absence of turgor stress or influences of a living protoplast. Forceextension curves obtained with a constant-rate-of-extension instrument and standard fiber-testing techniques demonstrate the permanence of cell wall loosening effects of prior indoleacetic acid (IAA) treatment of living tissue and provide evidence that these changes involve interactions between cell wall polymers. By this method various chemical and enzymatic modifications of cell walls can be evaluated in terms of altered mechanical properties. Thus, it was possible to remove over 97% of the cell nitrogen (including some hydroxyproline-containing protein) by hot methanol followed by enzymatic treatment and not change the extensibility properties of the tissue. In contrast, coleoptile mechanical properties were markedly influenced by chemical acetylation procedures or cellulase treatment.With 3 Figures in the Text  相似文献   

4.
The effect of plasma membrane alteration caused by osmotic shockof different strengths on the auxin-induced responses of Avenacoleoptile cells was observed. Osmotic shock brought about by0.5–0.7 M mannitol solution for 10 or 30 min, followedby phosphate-buffer (1 mM, pH 6.0) treatment for 10 min at 4?Ccaused no significant inhibition of auxin-induced cell extension.The osmotic shock did not affect auxin-induced cell wall looseningrepresented by stress-relaxation time and a decrease in thenoncellulosic glucose level of the cell wall. The shock causedonly a temporary inhibition of transmembrane potential and noinhibition of oxygen consumption. However, it inhibited auxin-stimulatedH+ secretion which was reversed by 0.1 mM CaCl2. We concludedthat the Osmotic shock may partly modify the plasma membranerelated to the hydrogen ion pump which interacts with auxin,but this modification which is reflected little by the transmembranepotential and cellular metabolism, is not closely related toauxin-induced cell wall loosening and thus cell extension inAvena coleoptiles. 3 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan (Received February 17, 1978; )  相似文献   

5.
The average molecular weight of the water soluble hemicelluloses(hemicellulose B) of the Avena coleoptile cell wall was determinedby gel permeation chromatography (GPC) and viscometry. Analysisof the neutral sugar composition of henucellulose B eluted froma GPC column (Sepharose 4B) indicated that it consists of ß-glucanwith a high molecular weight and arabinoxylan with a low molecularweight. A kinetic study of the effect of auxin on the moleculardistribution of henucellulose B demonstrated that auxin decreasedthe ß-glucan content of the hemicellulose as earlyas the first hour incubation, but not the arabinoxylan content,when it stimulated the extension of the coleoptile segments.Calculation of the weight-average molecular weight from thechromatograms suggested that auxin decreased the molecular weightof hemicellulose B; this was also confirmed by viscometry. Thus,auxin may cause cell wall loosening, leading to cell extension,through its effect on ß-glucan degradation or throughthe decrease in the molecular weight of hemicellulose B. (Received July 16, 1979; )  相似文献   

6.
Contents of the cell wall and sugar pool and the response toexogenously applied auxin (cell extension and cell wall loosening)were investigated with barley coleoptile segments excised from4-, 5- and 6-day-old seedlings. The first two groups exhibiteda high capacity to grow in terms of the intact growth rate andwere responsive to auxin, while those excised from 6-day-oldseedlings had a low growth capacity. The cell wall of 4- and5-day-old coleoptile segments contained almost the same amountof noncellulosic wall components per unit length while the 6-day-oldones had a lesser amount. The sugar pool and -cellulose contentper unit length decreased as the coleoptile aged. Auxin-stimulatedextension was most marked in the 4-day-old coleoptile segments.Auxin caused quantitative changes in the cell wall componentsof 4-day-old coleoptiles and, to a lesser extent, of 5-day-oldcoleoptiles, i.e., an increase in the contents of xylose andarabinose, both of which are constituents of noncellulosic polysaccharidesof the cell wall, and of -cellulose and a decrease in the noncellulosicglucose content. Auxin caused very little change in the noncellulosicsugar content and -cellulose content of the cell wall from 6-day-oldcoleoptile segments. The auxin-induced change in mechanicalproperties of the cell wall was significant in 4- and 5-day-oldcoleoptiles but very small in 6-day-old ones. The results suggestedthat the content of noncellulosic wall components is closelyrelated to the intact growth and auxin responsiveness of barleycoleoptiles. (Received April 20, 1978; )  相似文献   

7.
The inhibitory mode of action of jasmonic acid (JA) on the growth of etiolated oat (Avena sativa L. cv. Victory) coleoptile segments was studied in relation to the synthesis of cell wall polysaccharides using [14C]glucose. Exogenously applied JA significantly inhibited indoleacetic acid (IAA)-induced elongation of oat coleoptile segments and prevented the increase of the total amounts of cell wall polysaccharides in both the noncellulosic and cellulosic fractions during coleoptile growth. JA had no effect on neutral sugar compositions of hemicellulosic polysaccharides but substantially inhibited the IAA-stimulated incorporation of [14C]glucose into noncellulosic and cellulosic polysaccharides. JA-induced inhibition of growth was completely prevented by pretreating segments with 30 mm sucrose for 4 h before the addition of IAA. The endogenous levels of UDP-sugars, which are key intermediates for the synthesis of cell wall polysaccharides, were not reduced significantly by JA. Although these observations suggest that the inhibitory mode of action of JA associated with the growth of oat coleoptile segments is relevant to sugar metabolism during cell wall polysaccharide synthesis, the precise site of inhibition remains to be investigated.Abbreviations JA jasmonic acid - ABA abscisic acid - IAA indoleacetic acid - T 0 minimum stress relaxation time - TFA trifluoroacetic acid - TCA trichloroacetic acid - HPLC high-performance liquid chromatography - EtOAc ethyl acetate - TLC thin-layer chromatography - JA-Me methyl jasmonate - GLC-SIM gas-liquid chromatography-selected ion monitoring  相似文献   

8.
Auxin-indnced changes in barley coleoptile cell wall composition   总被引:1,自引:0,他引:1  
Auxin induces extension growth of barley coleoptile segments,causing cell extension and cell wall loosening represented bya change in mechanical properties of the cell wall. This responsedecreased after the segments were starved for more than 12 hrin buffer solution. Auxin decreased the noncellulosic glucosecontent of the cell wall of the segments starved for 0 and 6hr, but very little that of segments starved for 12 and 18 hr.The contents of arabinose, xylose and galactose, among noncellulosicpolysaccharides, and -cellulose of the cell wall increased duringthe starvation, but auxin did not affect them. The auxin-induceddecrease in glucose content was inhibited by nojirimycin, apotent inhibitor of ß-glucanase, which inhibited auxin-inducedextension and changes in mechanical properties of the cell wall,suggesting that cell wall loosening, and thus cell extension,resulted from partial degradation of ß-glucan of thecell wall. (Received April 20, 1978; )  相似文献   

9.
The glycosidic linkage compositions of intact and, in some cases, enzyme-degraded polysaccharides extracted from the cell walls of oat coleoptiles and subsequently purified have been examined. A major component is shown to be a glucuronoarabinoxylan similar in structure to those described for a variety of other monocots. The noncellulosic glucan component is a β-linked polymer containing both 1,4- and 1,3-linked glucosyl residues in a ratio of 2 to 1. Analysis of the oligosaccharide produced by ‘lichenase’ digestion of this β-glucan suggests that the the 1,3- and 1,4-glucosyl linkages repeat in regular fashion. A small amount of xyloglucan polysaccharides like those described for cell walls of dicots was also detected.  相似文献   

10.
11.
Several cell wall-bound glycosidases present in Avena sativa coleoptiles were assayed by following the hydrolysis of p-nitrophenyl-glycosides. Particular emphasis was placed on characterizing some parameters affecting the activity of β-galactosidase. The pH optimum of this enzyme is 4.5 to 5.5; it is sensitive to copper ions and p-chloromercuribenzoate treatment and apparently has an exceptionally low turnover rate. Indoleacetic acid treatment enhanced in vivo β-galactosidase activity of coleoptile segments by 36% over control after 60 minutes. This enhancement was prevented by abscisic acid and cycloheximide. High buffer strengths and low pH reduced the indoleacetic acid-enhanced increase in enzyme activity. These data lend support to the following proposed model of indoleacetic acid action. Indoleacetic acid enhances the release of hydrogen ions into the cell wall which promote the activities of cell wall glycosidases, some of which may participate in the cell extension process.  相似文献   

12.
Infrared evidence indicated that the oriented structure of matrixpolysaccharides changed on mechanical extension as well as duringextension growth of Nitella cell walls. The importance of theultrastructure of polysaccharide gels in controlling extensiongrowth is discussed. (Received July 3, 1974; )  相似文献   

13.
Infrared absorption spectra of film specimens of the epidermaland parenchyma cell walls of the third internode of pea stem,before and after protease treatment and after treatment forremoval of lipid materials, pectic substances and hemicellulose,were recorded, and characteristic bands in the spectrum of thewall were assigned. Polarization spectrum measurements of thewall provided evidence indicating that the non-cellulosic polysaccharidematrix as well as cellulose microfibrils has an oriented structurein the wall which changes during extension growth as well asupon mechanical extension of the walls. (Received March 9, 1978; )  相似文献   

14.
This study describes the stress relaxation of the cell wall of oat (Avena sativa) coleoptiles after different periods of geotropic stimulation. The upper and lower tissues (with respect to gravity) of geotrophically stimulated coleoptiles exhibit different wall properties. The lower tissues are less resistant to deformation than the upper. The ratio of stress to strain is significatly less in the lower than in the upper tissue. Similarly, the relaxation time and the minimum relaxation time, derived from the Maxwell model which describes the physical characteristics of polymers, are also shorter in the lower tissue. However, the maximum relaxation time shows no difference between the upper and lower tissues of a geotropically stimulated coleoptile. The differences between the tissues begin at about 8 minutes after the commencement of stimulation, similar to the time for the initiation of dictyosome redistribution, and precede the onset of geotropism. The above responses of the cell wall of the lower tissue are similar to those induced by indoleacetic acid. The parameters of wall properties of the coleoptiles of both the control and the geostimulated fluctuate rhythmically with time. The periodic changes in wall properties of the coleoptile are compared to other cyclic physiological phenomena.  相似文献   

15.
Summary 1.During second positive irradiation, bending increases steadily with time. Under optimal conditions, the lag between onset of illumination and beginning of parabolic bending behavior is about 3 min. — 2. Shortly after irradiation ceases, bending becomes linear with time. On a clinostat, bending continues for about 2.5 hr. Auxanometric measurements show that the ultimate cessation of bending is not due to failing growth rate. — 3. The second positive response shows a striking dependence on intensity of irradiation. Inactivation occurs when irradiation approaches the intensity of full daylight. — 4. Induction is linear with duration of illumination, both at purely activating intensities and at partially inactivating intensities. — 5. Induction at 2°, while somewhat slower than at 25°, retains linear dependence on exposure duration. This suggests that the reactions immediately following light reception are slowed but not stopped at low temperature. — 6. Growth, which drops to about 0.5 /min at 2°, resumes at about 18 min-1 as soon as plants are warmed to 25°. Curvature does not seem to begin for about 10 min. Combined with information about lag time for primary auxin action, this suggests that lateral auxin transport, as well as growth, is strongly inhibited at near-freezing temperatures. — 7. The induced transport system is highly stable at 2°. — 8. Under optimal conditions, the lag between onset of irradiation and induction of capacity to produce measurable curvature is only a few seconds. The length of the lag is dependent on the rate of induction. The lag is thought to be due to the requirement that enough induction be accumulated to overcome resistance of the coleoptile. — 9. Induction is dependent on the gradient of light across the coleoptile, whether measured for purely activating or partially inactivating intensities. The light received is probably integrated either across individual cells or across the entire width of the coleoptile.  相似文献   

16.
Plant cell walls expand considerably during cell enlargement, but the biochemical reactions leading to wall expansion are unknown. McQueen-Mason et al. (1992, Plant Cell 4, 1425) recently identified two proteins from cucumber (Cucumis sativus L.) that induced extension in walls isolated from dicotyledons, but were relatively ineffective on grass coleoptile walls. Here we report the identification and partial characterization of an oat (Avena sativa L.) coleoptile wall protein with similar properties. The oat protein has an apparent molecular mass of 29 kDa as revealed by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis. Activity was optimal between pH 4.5 and 5.0, which makes it a suitable candidate for acid growth responses of plant cell walls. The oat protein induced extension in walls from oat coleoptiles, cucumber hypocotyls and pea (Pisum sativum L.) epicotyls and was specifically recognized by an antibody raised against the 29-kDa wall-extension-inducing protein from cucumber hypocotyls. Contrary to the situation in cucumber walls, the acid-extension response in heat-inactivated oat walls was only partially restored by oat or cucumber wall-extension proteins. Our results show that an antigenically conserved protein in the walls of cucumber and oat seedlings is able to mediate a form of acid-induced wall extension. This implies that dicotyledons and grasses share a common biochemical mechanism for at least part of acid-induced wall extensions, despite the significant differences in wall composition between these two classes of plants.Abbreviations ConA concanavalin A - CM carboxymethyl - DEAE diethylaminoethyl - DTT dithiothreitol - Ex29 29-kDa expansin  相似文献   

17.
Hydrogen ions and auxin induce rapid cell extension of Avenacoleoptile segments. Nojirimycin (5-amino-5-deoxy-D-glucopyranose),a potent glucanase inhibitor, inhibits auxin-induced growthbut does not affect hydrogen ion-induced extension. This inhibitorhas little effect on respiration of coleoptile segments butstrongly inhibits the in vitro activity of ß-glucosidase.Hydrogen ions and auxin decreased the minimum stress-relaxationtime of the cell wall, indicating that both enhanced cell extensionthrough cell wall loosening. The hemicellulosic glucose contentof the cell wall which was decreased by auxin after about a2-hr lag, was not affected by hydrogen ions. These results suggestthat cell wall loosening induced by hydrogen ions may not bethe same as that caused by auxin, although both phenomena arerepresented by the decrease in the minimum stress-relaxationtime. (Received November 1, 1976; )  相似文献   

18.
Synthesis of growth-limiting proteins (GLP) is required for continued auxin-induced elongation of oat (Avena sativa L.) coleoptiles. In order to determine whether GLP synthesis is dependent or independent of auxin, a double-labeling ratio technique, coupled with disc-gel electrophoresis, has been used to assess the effect of auxin on the pattern of protein synthesis. Sections were peeled to enhance amino-acid uptake; proteins were labeled with [14C]- or [3H] leucine in the presence or absence of indole-3-acetic acid for 40 min to 6 h, and were separated into soluble, membrane-associated, and wall-associated fractions. Regardless of the conditions used, or the protein fraction examined, no changes in response to auxin were detected in the pattern of protein synthesis. In order to escape detection by this technique an auxin-induced protein would have to comprise less than 0.75% of the total newly synthesized protein. Thus the synthesis of GLP appears to be independent of auxin. The same technique has been used to follow protein turnover. During the chase, proteins are initially degraded at an average rate of 8% h?1, and some protein bands showed as much as 14% h?1 degradation. No protein was detected which had a turnover rate as rapid as the GLP.  相似文献   

19.
Oat coleoptile segments were treated with or without 10 mM galactose in the presence or absence of 10 μM IAA and various concentrations of mannitol (pre-incubation). Auxin-induced growth was inhibited by galactose. Segments were then transferred to buffer solutions containing or not containing 10 mM galactose (post-incubation). Expansion growth due to rapid water absorption was observed. The expansion growth during the post-incubation was inhibited by galactose when galactose was applied during the post-incubation period or all through the pre- and post-incubation but was not affected by galactose when it was applied only during the pre-incubation. This result indicates that the galactose effect on the expansion growth is due to its inhibitory action during the post-incubation period. Galactose has been reported to be a specific inhibitor for cell wall synthesis. Thus, it is suggested that the expansion growth during post-incubation requires cell wall synthesis and is not just the process of passive water absorption. The primary action of auxin does not seem to require new synthesis of polysaccharides.  相似文献   

20.
The effect of brefeldin A (BFA) on the synthesis and incorporation of polysaccharides, proteins and glycoproteins into the cell wall of subapical coleoptile segments isolated from etiolated oat seedlings (Avena sativa L. cv. Angelica) has been investigated. In the presence of D-[U-14C]-glucose, the incorporation of radioactive glycosyl residues into buffer-soluble, membrane (matrix polysaccharides) and cell wall polysaccharides was drastically inhibited by increasing concentrations of BFA up to 10 μ·mL−1. BFA also altered the pattern of these polysaccharides suggesting a different sensitivity of glycosyltransferases toward the action of the drug. The incorporation of [U-14C]-glycine or L-[U-14C]-leucine into non-covalently- and covalently-bound cell wall proteins as well as the incorporation of radioactive N-acetylglucosamine residues into the newly synthesised oligosaccharidic chains of cytosolic, membrane and cell wall glycoproteins remained unchanged in the presence of 10 μg·mL−1 BFA. The data demonstrate that, in oat coleoptile segments, BFA specifically inhibits the synthesis of cellulose and matrix polysaccharides without altering the synthesis and incorporation of proteins and glycoproteins into the cell wall. In addition, it is demonstrated that BFA does not affect the in vivo activity of glycosyltransferases involved in the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the oligosaccharidic chains of glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号