首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features.  相似文献   

2.
Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.  相似文献   

3.
Seventeen specimens of Triportheus guentheri, a fish of the family Characidae, were submitted to chromosomal analysis, with a highly differentiated heteromorphic ZW pair being detected. Chromosome W is much smaller than chromosome Z and mostly heterochromatic. Chromosome Z is the largest in the karyotype, with heterochromatin occurring in the telomeric and centromeric regions only. The W chromosome also varies somewhat in size, the variations being probably due to its long arm. In addition to two other autosomal pairs, chromosome Z shows also an occasional Ag-NOR. Aspects of the ZW system differentiation and of the NOR presence in chromosome Z are discussed. The Characidae family includes a great deal of neotropical freshwater fish species and Triportheus appears to represent the only genus in this family having sex chromosome differentiation at a cytological level.  相似文献   

4.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

5.
Parodon and Apareiodon lack sufficiently consistent morphological traits to be considered a monophyletic group in Parodontidae. Species within this family are either sex-homomorphic or sex-heteromorphic (i.e., lacking a differentiated sex chromosome system, ZZ/ZW or ZZ/ZW(1)W(2)). In this study, a DNA fragment from the heterochromatin segment of the W chromosome of Apareiodon ibitiensis (named WAp) was microdissected and used for in situ mapping of nine Parodontidae species. The species were also characterized using a satellite DNA probe (pPh2004). The species were phylogenetically clustered according to 17 characters, which were examined by both classical and molecular cytogenetic techniques. Given the present results, the single ZZ/ZW sex chromosome system seems to have been derived from a paracentric inversion of a terminal WAp site onto the proximal regions of the short arms of a metacentric chromosome pair, followed by WAp site amplification. We reason that these events restrained recombination and favored differentiation of the W chromosome in some species. Moreover, co-hybridization experiments targeting the WAp and pPh2004 repetitive DNA sites of A. affinis suggest that the ZZ/ZW(1)W(2) sex chromosomes of this species may have arisen from a translocation between the proto-sex chromosome and an autosome. Our phylogenetic analysis corroborates the hypothesis of sex chromosome differentiation and establishes groups of closely related species. The phylogenetic reorganization in response to these new data supports the presence of internal monophyletic groups within Parodontidae.  相似文献   

6.
Conventional and molecular chromosomal analyses were carried out on three populations of Apareiodon ibitiensis sampled from the hydrographic basins of the São Francisco River and Upper Paraná River (Brazil). The results reveal a conserved diploid number (2n = 54 chromosomes), a karyotype formula consisting of 50 m‐sm + 4st and a ZZ/ZW sex chromosome system that has not been previously identified for the species. C‐banding analysis with propidium iodide staining revealed centromeric and terminal bands located in the chromosomes of the specimens from the three populations and allowed the identification of heteromorphism of heterochromatin regions in the Z and W chromosomes. The number of 18S sites located through fluorescent in situ hybridization (FISH) varied between the populations of the São Francisco and Upper Paraná Rivers. The location of 5S rDNA sites proved comparable in one pair of metacentric chromosomes. Thus, the present study proposes a ZZ/ZW sex chromosome system for A. ibitiensis among the Parodontidae, and a hypothesis is presented regarding possible W chromosome differentiation stages in this species through DNA accumulation, showing geographical variations for this characteristic, possibly as a consequence of geographical reproductive isolation.  相似文献   

7.
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.  相似文献   

8.
广义烙铁头属三种烙铁头的核型及分类地位初步探讨   总被引:2,自引:0,他引:2  
报道3种烙铁头蛇的核型。其中,烙铁头2n=36=16M(14V+2SV/V)+20m,ZW型性决定,Z为V型,W为SI/SV型,Z明显大于W;菜花烙铁头2居群2n=36=16M(14V+2SI)+20m,ZW型性决定,Z为V型,W为SI型,Z明显大于W;云南竹叶青2n=36=16M(12V/SV+2SV/SI+2SI)+2m,无异型性染本,对3种的核型及烙铁头属已知核型进行了比较分析,并对云南竹叶  相似文献   

9.
The chromosomes of an undescribed species of the genus Apareiodon (Characiformes, Parodontidae) from the Verde River, a headwater affluent of the Tibagi River (Paraná State, Brazil), were investigated using conventional Giemsa and Ag stainings, C-banding, CMA(3) fluorescence and fluorescent in situ hybridization (FISH) using 18S and 5S rDNA probes. The diploid chromosome number was 2n = 54, with the karyotype composed of 48 meta/submetacentric and six subtelocentric chromosomes in males, and 47 meta/submetacentric + seven subtelocentric chromosomes in females. The difference is hypothesized to be due to a ZZ/ZW heteromorphic sex chromosome system, a cytotaxonomic characteristic previously observed only in some species of the genus Parodon (family Parodontidae). The presence of similar and/or identical heteromorphic sex chromosome systems might suggest that species of the genera Parodon and Apareiodon bearing ZZ/ZW heteromorphic sex chromosomes likely constitute a monophyletic group, a hypothesis to be tested by a robust phylogeny of the family.  相似文献   

10.
Ota K  Tateno Y  Gojobori T 《Gene》2003,317(1-2):187-193
While highly differentiated and long-conserved sex chromosomes such as XY and ZW chromosomes are observed, respectively, in mammalian and avian species, no counterparts to such chromosomes were observed in fish until we reported in the previous study that well-conserved and highly differentiated ZW sex chromosomes existed in the family of Synodontidae. Then, the problem was if the evolutionary history of the fish ZW chromosomes was long enough to be comparable to the mammalian and avian counterparts. To tackle the problem, we had to extend our finding of the fish sex chromosomes further than a family alone. For this purpose, we chose Aulopus japonicus that belonged to one of the related families to Synodontidae.Our cytogenetic and fluorescence in situ hybridization (FISH) analyses have clearly demonstrated that A. japonicus also has ZW chromosomes. We have also found that 5S rDNA clusters are located on the Z and W chromosomes in this species. Using nontranscribed intergenic sequences in the 5S rDNA clusters as PCR primers, we successfully amplified a 6-kb-long female-specific sequence on the W chromosome. The 6-kb-long sequence contained one transposable element and two tRNA sequences. The function of the sequence remains to be studied. Our Southern blot analysis confirmed that the 6-kb sequence was located only on the W chromosome.Therefore, it is now said that highly differentiated ZW chromosomes have been conserved over two fish families. As these families were reported to have been diverged 30-60 million years ago, the fish ZW chromosomes have an evolutionary history corresponding to the history of the families. This is perhaps the first case that fish sex chromosomes are shown to have such a long evolutionary lineage.  相似文献   

11.
Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes.  相似文献   

12.
Karyotype variation in the plethodontid salamander, Aneides ferreus, has been analysed. 358 individuals from 14 populations, representing the major portion of the range of this salamander, have been karyologically examined. In A. ferreus, n=14. When the chromosomes are arranged in a decreasing relative length series, the karyotype is heteromorphic with respect to chromosome number 13, which may be either telocentric (T) or subtelocentric (ST). Variation in the heteromorphism over the range of the species is sex related, and probably also reflects relative population sizes. The heteromorphism in the isolated populations of A. ferreus on Vancouver Island, British Columbia, Canada, resembles a WZfemale/ZZmale sex chromosome dimorphism, suggesting the possibility that chromosome number 13 may be involved in sex determination in this population. The possibility that chromosome number 13 is involved in sex determination in all populations of A. ferreus is discussed. Our data suggest that the ancestral A. ferreus karyotype was homomorphic for T (T/T), and that the ST was derived from the T by a pericentric inversion. In peripheral populations, only the W homologue has been affected, whereas in central populations both the W and the Z chromosomes have been rearranged. Comparisons are made with other species of Aneides for which karyological information is available, and it is concluded that chromosome rearrangements have played an important role in the evolution of the genus. In C-banded chromosomes of A. ferreus, staining is most intense at the centromere regions of the larger chromosomes and is absent only in some of the smaller chromosomes. Implications of this C-banding pattern are discussed.  相似文献   

13.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

14.
Karyotype and chromosomal location of the major ribosomal RNA genes (rDNA) were studied using fluorescence in situ hybridization (FISH) in five species of CRASSOSTREA: three Asian-Pacific species (C. gigas, C. plicatula, and C. ariakensis) and two Atlantic species (C. virginica and C. rhizophorae). FISH probes were made by PCR amplification of the intergenic transcribed spacer between the 18S and 5.8S rRNA genes, and labeled with digoxigenin-11-dUTP. All five species had a haploid number of 10 chromosomes. The Atlantic species had 1-2 submetacentric chromosomes, while the three Pacific species had none. FISH with metaphase chromosomes detected a single telomeric locus for rDNA in all five species without any variation. In all three Pacific species, rDNA was located on the long arm of Chromosome 10 (10q)--the smallest chromosome. In the two Atlantic species, rDNA was located on the short arm of Chromosome 2 (2p)--the second longest chromosome. A review of other studies reveals the same distribution of NOR sites (putative rDNA loci) in three other species: on 10q in C. sikamea and C. angulata from the Pacific Ocean and on 2p in C. gasar from the western Atlantic. All data support the conclusion that differences in size and shape of the rDNA-bearing chromosome represent a major divide between Asian-Pacific and Atlantic species of CRASSOSTREA: This finding suggests that chromosomal divergence can occur under seemingly conserved karyotypes and may play a role in reproductive isolation and speciation.  相似文献   

15.
16.
The W chromosome of the silkworm Bombyx mori is devoid of functional genes, except for the putative female-determining gene (Fem). To localize Fem, we investigated the presence of W-specific DNA markers on strains in which an autosomal fragment containing dominant marker genes was attached to the W chromosome. We produced new W-chromosomal fragments from the existing Zebra-W strain (T(W;3)Ze chromosome) by X-irradiation, and then carried out deletion mapping of these and sex-limited yellow cocoon strains (T(W;2)Y-Chu, -Abe and -Ban types) from different Japanese stock centers. Of 12 RAPD markers identified in the normal W chromosomes of most silkworm strains in Japan, the newly irradiated W(B-YL-YS)Ze chromosome contained three, the T(W;2)Y-Chu chromosome contained six, and the T(W;2)Y-Abe and -Ban chromosomes contained only one (W-Rikishi). To investigate the ability of the reduced W-chromosome translocation fragments to form heterochromatin bodies, which are found in nuclei of normal adult female sucking stomachs, we examined cells of the normal type p50 strain and the T(W;2)Y-Chu and -Abe strains. A single sex heterochromatin body was found in nuclei of p50 females, whereas we detected only small sex heterochromatin bodies in the T(W;2)Y-Chu strain and no sex heterochromatin body in the T(W;2)Y-Abe strain. Since adult females of all strains were normal and fertile, we conclude that only extremely limited region, containing the W-Rikishi RAPD sequence of the W chromosome, is required to determine femaleness. Based on a comparison of the normal W-chromosome and 7 translocation and W-deletion strains we present a map of Fem relative to the 12 W-specific RAPD markers.  相似文献   

17.
Eleven representatives of the superorder Amphiesmenoptera (Trichoptera + Lepidoptera) were examined for sex chromatin status. Three species represent stenopsychoid, limnephiloid and leptoceroid branches of the Trichoptera; eight species belong to the primitive, so-called nonditrysian Lepidoptera and represent the infra-orders Zeugloptera, Dacnonypha, Exoporia, Incurvariina, Nepticulina and Tischeriina. The female-specific sex chromatin body was found in the interphase somatic nuclei of Tischeria ekebladella (Bjerkander 1795) (Lepidoptera, Tischeriina). The sex chromatin was absent in all investigated Trichoptera species as well as in all representatives of the nonditrysian Lepidoptera except Tischeria ekebladella . The sex chromosome mechanism of Limnephilus lunatus Curtis 1834 (Trichoptera, Limnephilidae) is Z/ZZ. The sex chromosome mechanism of Tischeria ekebladella (Lepidoptera, Tischeriina) is ZW/ZZ including the W chromosome as the largest element in the chromosome set. The data obtained support the hypothesis that the Z/ZZ sex chromosome system, the female heterogamety and the absence of the sex chromatin body in interphase nuclei are ancestral traits in the superorder Amphiesmenoptera. These ancestral characters are probably kept constant in all the Trichoptera and in the most primitive Lepidoptera. The W sex chromosome and the sex chromatin evolved later in the nonditrysian grade of the Lepidoptera. It is proposed that the sex chromatin is a synapomorphy of Tischeriina and Ditrysia.  相似文献   

18.
F Marec  W Traut 《Génome》1994,37(3):426-435
Structure and pairing behavior of sex chromosomes in females of four T(W;Z) lines of the Mediterranean flour moth, Ephestia kuehniella, were investigated using light and electron microscopic techniques and compared with the wild type. In light microscopic preparations of pachytene oocytes of wild-type females, the WZ bivalent stands out by its heterochromatic W chromosome strand. In T(W;Z) females, the part of the Z chromosome that was translated onto the W chromosome was demonstrated as a distal segment of the neo-W chromosome, displaying a characteristic non-W chromosomal chromomere-interchromomere pattern. This segment is homologously paired with the corresponding part of a complete Z chromosome. In contrast with the single ball of heterochromatic W chromatin in highly polyploid somatic nuclei of wild-type females, the translocation causes the formation of deformed or fragmented W chromatin bodies, probably owing to opposing tendencies of the Z and W chromosomal parts of the neo-W. In electron microscopic preparations of microspread nuclei, sex chromosome bivalents were identified by the remnants of electron-dense heterochromatin tangles decorating the W chromosome axis, by the different lengths of the Z and W chromosome axes, and by incomplete pairing. No heterochromatin tangles were attached to the translocated segment of the Z chromosome at one end of the neo-W chromosome. Because of the homologous pairing between the translocation and the structurally normal Z chromosome, pairing affinity of sex chromosomes in T(W;Z) females is significantly improved. Specific differences observed among T(W;Z)1-4 translocations are probably due to the different lengths of the translocated segments.  相似文献   

19.
We report evidence of an XX/XY sex chromosome system in the snake eel Ophisurus serpens (Anguilliformes: Ophichthidae). We characterized the male and female karyotypes by C-, replication- and HaeIII-bandings. The 45S and 5S ribosomal gene families were located using dual fluorescence in situ hybridization, which showed that the 5S rDNA sites were present on the X chromosome, beside an autosome pair. FISH with a telomeric peptide nucleic acid probe enabled recognition of Interstitial Telomeric Sequences (ITSs), likely remnants of chromosomal rearrangements, in five chromosome pairs, including the rDNA-bearing ones. Possible mechanisms of the origin of sex chromosomes in this species are discussed, considering the presence of a sex-linked marker and ITSs.  相似文献   

20.
Chromosomes exhibiting elevated levels of differentiation are termed hypervariable but no proposed mechanisms are sufficient to account for such enhanced evolutionary divergence. Both hypervariable sex and supernumerary (B) chromosomes were investigated in the endemic New Zealand frog, Leiopelma hochstetteri, which is chromosomally polymorphic both within and between populations and has sufficiently elevated variation that different populations can be identified solely by their C-banded karyotypes. This frog is further distinguished by the univalent, female-specific W-chromosome (0W/00 sex determination) uniquely possessed by North Island populations. This sex chromosome exhibited variation in morphology, size, and heterochromatin distribution, sufficient to resolve 11 different types, including isochromosomes. Five of the 12 populations examined also had supernumerary chromosomes that varied in number (up to 15 per individual) and morphology. Specific variations seen among the hypervariable chromosomes could have resulted from heterochromatinisation, chromosome fusions, loss-of-function mutations, deletions, and/or duplications. Frogs of the same species from Great Barrier Island, however, had neither supernumeraries nor the female-specific chromosome. The 0W/00 sex chromosome system must have been derived after the isolation of Great Barrier Island from North Island populations by raised sea levels between 14 000 and 8000 years ago. Furthermore, biochemical divergence between populations is minor and therefore the chromosomal variation seen is comparatively recent in origin. The one characteristic common to all known hypervariable chromosomes is curtailment or lack of recombination. Their accelerated evolution therefore is possible via the mechanism of Muller's ratchet, either alone or in concert with other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号