首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamics simulations were conducted to estimate the free energy barrier of unfolding surfactant-associated polypeptide C (SP-C) from an alpha-helical conformation. Experimental studies indicate that while the helical fold of SP-C is thermodynamically stable in phospholipid micelles, it is metastable in a mixed organic solvent of CHCl3/CH3OH/0.1 M HCl at 32:64:5 (v/v/v), in which it undergoes an irreversible transformation to an insoluble aggregate that contains beta-sheet. On the basis of experimental observations, the free energy barrier was estimated to be approximately 100 kJ/mole by applying Eyring's transition state theory to the experimental rate of unfolding [Protein Sci 1998;7:2533-2540]. These studies prompted us to carry out simulations to investigate the unwinding process of two helical turns encompassing residues 25-32 in water and in methanol. The results give an upper bound estimation for the free energy barrier of unfolding of SP-C of approximately 20 kJ/mole. The results suggest a need to reconsider the applicability of a single-mode activated process theory to protein unfolding.  相似文献   

2.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

3.
The stability of a 15-residue peptide has been investigated using CD spectroscopy and molecular simulation techniques. The sequence of the peptide was designed to include key features that are known to stabilize alpha-helices, including ion pairs, helix dipole capping, peptide bond capping, and aromatic interactions. The degree of helicity has been determined experimentally by CD in three solvents (aqueous buffer, methanol, and trifluoroethanol) and at two temperatures. Simulations of the peptide in the aqueous system have been performed over 500 ps at the same two temperatures using a fully explicit solvent model. Consistent with the CD data, the degree of helicity is decreased at the higher temperature. Our analysis of the simulation results has focused on competition between different side-chain/side-chain and side-chain/main-chain interactions, which can, in principle, stabilize the helix. The unfolding in aqueous solution occurs at the amino terminus because the side-chain interactions are insufficient to stabilize both the helix dipole and the peptide hydrogen bonds. Loss of capping of the peptide backbone leads to water insertion within the first peptide hydrogen bond and hence unfolding. In contrast, the carboxy terminus of the alpha-helix is stable in both simulations because the C-terminal lysine residue stabilizes the helix dipole, but at the expense of an ion pair.  相似文献   

4.
We address the question of whether the distribution of secondary structure propensities of the residues along the polypeptide chain (denominated here as secondary structure profiles) is conserved in proteins throughout evolution, for the particular case of alpha-helices. We have analyzed by CD the conformation of peptides corresponding to the five alpha-helices of two alpha/beta parallel proteins (ComA and Ara). The large alpha-helical population of peptide ComA-4 detected by CD in aqueous solution has been confirmed by NMR. These proteins are members of the CheY and P21-ras families, respectively, which have been studied previously in the same way (Muñoz V, Jiménez MA, Rico M, Serrano L, 1995, J Mol Biol 245:275-296). Comparison of the helical content of equivalent peptides reveals that protein alpha-helix propensity profiles are not conserved. Some equivalent peptides show very different helical populations in solution and this is especially evident in very divergent proteins (ComA and CheY). However, all the peptides analyzed so far adopted an important population of helical conformations in the presence of 30% trifluoroethanol, indicating that there could be a conserved minimal requirement for helical propensity.  相似文献   

5.
Structures of N-termini of helices in proteins.   总被引:1,自引:7,他引:1       下载免费PDF全文
We have surveyed 393 N-termini of alpha-helices and 156 N-termini of 3(10)-helices in 85 high resolution, non-homologous protein crystal structures for N-cap side-chain rotamer preferences, hydrogen bonding patterns, and solvent accessibilities. We find very strong rotamer preferences that are unique to N-cap sites. The following rules are generally observed for N-capping in alpha-helices: Thr and Ser N-cap side chains adopt the gauche - rotamer, hydrogen bond to the N3 NH and have psi restricted to 164 +/- 8 degrees. Asp and Asn N-cap side chains either adopt the gauche - rotamer and hydrogen bond to the N3 NH with psi = 172 +/- 10 degrees, or adopt the trans rotamer and hydrogen bond to both the N2 and N3 NH groups with psi = 1-7 +/- 19 degrees. With all other N-caps, the side chain is found in the gauche + rotamer so that the side chain does not interact unfavorably with the N-terminus by blocking solvation and psi is unrestricted. An i, i + 3 hydrogen bond from N3 NH to the N-cap backbone C = O in more likely to form at the N-terminus when an unfavorable N-cap is present. In the 3(10)-helix Asn and Asp remain favorable N-caps as they can hydrogen bond to the N2 NH while in the trans rotamer; in contrast, Ser and Thr are disfavored as their preferred hydrogen bonding partner (N3 NH) is inaccessible. This suggests that Ser is the optimum choice of N-cap when alpha-helix formation is to be encouraged while 3(10)-helix formation discouraged. The strong energetic and structural preferences found for N-caps, which differ greatly from positions within helix interiors, suggest that N-caps should be treated explicitly in any consideration of helical structure in peptides or proteins.  相似文献   

6.
Recently, Presta and Rose proposed that a necessary condition for helix formation is the presence of residues at the N- and C-termini (called NTBs and CTBs) whose side chains can form hydrogen bonds with the initial four amides and the last four carbonyls of the helix, which otherwise lack intrahelical hydrogen bonding partners. We have tested this hypothesis by conformational analysis by circular dichroism (CD) of a synthetic peptide corresponding to a region (171-188) of the protein carboxypeptidase A; in the protein, residues 174 to 186 are helical and are flanked by NTBs and CTBs. Since helix formation in this peptide may also be stabilized by electrostatic interactions, we have compared the helical content of the native peptide with that of several modified peptides designed to enable dissection of different contributions to helix stability. As expected, helix dipole interactions appear to contribute substantially, but we conclude that hydrogen bonding interactions as proposed by Presta and Rose also stabilize helix formation. To assist in comparison of different peptides, we have introduced two concentration-independent CD parameters which are sensitive probes of helix formation.  相似文献   

7.
We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides.  相似文献   

8.
The helix content of a series of peptides containing single substitutions of the 20 natural amino acids in a new designed host sequence, succinyl-YSEEEEKAKKAXAEEAEKKKK-NH2, has been determined using CD spectroscopy. This host is related to one previously studied, in which triple amino acid substitutions were introduced into a background of Glu-Lys blocks completely lacking alanine. The resulting free energies show that only Ala and Glu- prove to be helix stabilizing, while all other side chains are neutral or destabilizing. This agrees with results from studies of alanine-rich peptide modela, but not the previous Glu-Lys block oligomers in which Leu and Met also stabilize helix. The helix propensity scale derived from the previous block oligomers correlated well with the frequencies of occurrence of different side chains in helical sequences of proteins, whereas the values from the present series do not. The role of context in determining scales of helix propensity values is discussed, and the ability of algorithms designed to predict helix structure from sequence is compared.  相似文献   

9.
Thermal and GdmCl-induced unfolding transitions of aldolase from Staphylococcus aureus are reversible under a variety of solvent conditions. Analysis of the transitions reveals that no partially folded intermediates can be detected under equilibrium conditions. The stability of the enzyme is very low with a delta G0 value of -9 +/- 2 kJ/mol at 20 degrees C. The kinetics of unfolding and refolding of aldolase are complex and comprise at least one fast and two slow reactions. This complexity arises from prolyl isomerization reactions in the unfolded chain, which are kinetically coupled to the actual folding reaction. Comparison with model calculations shows that at least two prolyl peptide bonds give rise to the observed slow folding reactions of aldolase and that all of the involved bonds are presumably in the trans conformation in the native state. The rate constant of the actual folding reaction is fast with a relaxation time of about 15 s at the midpoint of the folding transition at 15 degrees C. The data presented on the folding and stability of aldolase are comparable to the properties of much smaller proteins. This might be connected with the simple and highly repetitive tertiary structure pattern of the enzyme, which belongs to the group of alpha/beta barrel proteins.  相似文献   

10.
The C-terminal oligomerization domain of chicken cartilage matrix protein is a trimeric coiled coil comprised of three identical 43-residue chains. NMR spectra of the protein show equivalent magnetic environments for each monomer, indicating a parallel coiled coil structure with complete threefold symmetry. Sequence-specific assignments for 1H-, 15N-, and 13C-NMR resonances have been obtained from 2D 1H NOESY and TOCSY spectra, and from 3D HNCA, 15N NOESY-HSQC, and HCCH-TOCSY spectra. A stretch of alpha-helix encompassing five heptad repeats (35 residues) has been identified from intra-chain HN-HN and HN-H alpha NOE connectivities. 3JHNH alpha coupling constants, and chemical shift indices. The alpha-helix begins immediately downstream of inter-chain disulfide bonds between residues Cys 5 and Cys 7, and extends to near the C-terminus of the molecule. The threefold symmetry of the molecule is maintained when the inter-chain disulfide bonds that flank the N-terminus of the coiled coil are reduced. Residues Ile 21 through Glu 36 show conserved chemical shifts and NOE connectivities, as well as strong protection from solvent exchange in the oxidized and reduced forms of the protein. By contrast, residues Ile 10 through Val 17 show pronounced chemical shift differences between the oxidized and reduced protein. Strong chemical exchange NOEs between HN resonances and water indicate solvent exchange on time scales faster than 10 s, and suggests a dynamic fraying of the N-terminus of the coiled coil upon reduction of the disulfide bonds. Possible roles for the disulfide crosslinks of the oligomerization domain in the function of cartilage matrix protein are proposed.  相似文献   

11.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA.  相似文献   

12.
We have carried out a series of multiple Xaa-->Ala changes at nonadjacent surface positions in the sequence of sperm whale myoglobin. Although the corresponding single substitutions do not increase the thermal stability of the protein, multiple substitutions enhance the stability of the resulting myoglobins. The effect observed is an increase in the observed Tm (midpoint unfolding temperature) relative to that predicted from assuming additivity of the free energy changes corresponding to single mutations. The stabilization occurs in the presence of urea, as measured by the dependence of the unfolding temperature on urea concentration. The sites that have been altered occur in different helices and are not close in sequence or in the native structure of myoglobin. The observed effect is consistent with a role of multiple alanines in residual interactions in the unfolded state of the mutant proteins.  相似文献   

13.
In the N-terminal domain of lambda repressor, the Asp 14 side chain forms an intrahelical, hydrogen bond/salt bridge with the Arg 17 side chain and a tertiary hydrogen bond with the Ser 77 side chain. By measuring the stabilities to urea denaturation of the wild-type N-terminal domain and variants containing single, double, and triple alanine substitutions at positions 14, 17, and 77, the side-chain interaction energies, the coupling energy between interactions, and the intrinsic effects of each wild-type side chain on protein stability have been estimated. These studies indicate that the Asp 14-Arg 17 and Asp 14-Ser 77 interactions are stabilizing by roughly 0.8 and 1.5 kcal/mol, respectively, but that Asp 14, by itself, is destabilizing by roughly 0.9 kcal/mol. We also show that a peptide model of alpha-helix 1, which contains Asp 14 and Arg 17, forms a reasonably stable, monomeric helix in solution and responds to alanine mutations at positions 14 and 17 in the fashion expected from the intact protein studies. These studies suggest that it is possible to view the stability effects of mutations in intact proteins in a hierarchical fashion, with the stability of units of secondary structure being distinguishable from the stability of tertiary structure.  相似文献   

14.
A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM.  相似文献   

15.
The partial charge of the nitrogen atom in peptide bonds.   总被引:1,自引:2,他引:1       下载免费PDF全文
A majority of the standard texts dealing with proteins portray the peptide link as a mixture of two resonance forms, in one of which the nitrogen atom has a positive charge. As a consequence, it is often believed that the nitrogen atom has a net positive charge. This is in apparent contradiction with the partial negative charge on the nitrogen that is used in force fields for molecular modeling. However, charges on resonance forms are best regarded as formal rather than actual charges and current evidence clearly favors a net negative charge for the nitrogen atom. In the course of the discussion, new ideas about the electronic structure of amides and the peptide bond are presented.  相似文献   

16.
Electrostatic stabilization in four-helix bundle proteins.   总被引:2,自引:3,他引:2       下载免费PDF全文
Charge substitutions generated by site-directed mutagenesis at the termini of adjacent anti-parallel alpha-helices in a four-helix bundle protein were used to determine a precise value for the contribution of indirect charge-charge interactions to overall protein stability, and to simulate the electrostatic effects of alpha-helix macrodipoles. Thermodynamic double mutant cycles were constructed to measure the interaction energy between such charges on adjacent anti-parallel helices in the four-helix bundle cytochrome b562 from Escherichia coli. Previously, theoretical calculations of helix macrodipole interactions using modeled four-helix bundle proteins have predicted values ranging over an order of magnitude from 0.2 to 2.5 kcal/mol. Our system represents the first experimental evidence for electrostatic interactions such as those between partial charges due to helix macrodipole charges. At the positions mutated, we have measured a favorable interaction energy of 0.6 kcal/mol between opposite charges simulating an anti-parallel helix pair. Pairs of negative or positive charges simulating a parallel orientation of helices produce an unfavorable interaction of similar magnitude. The interaction energies show a strong dependence upon ionic strength, consistent with an electrostatic effect. Indirect electrostatic contacts do appear to confer a limited stabilization upon the association of anti-parallel packing of helices, favoring this orientation by as much as 1 kcal/mol at 20 mM K phosphate.  相似文献   

17.
The usefulness of molecular dynamics to assess the structural integrity of mutants containing several mutations has been investigated. Our goal was to determine whether molecular dynamics would be able to discriminate mutants of a protein having a close-to-wild-type fold, from those that are not folded under the same conditions. We used as a model the B1 domain of protein G in which we replaced the unique central alpha-helix by the sequence of the second beta-hairpin, which has a strong intrinsic propensity to form this secondary structure in solution. In the resulting protein, one-third of the secondary structure has been replaced by a non-native one. Models of the mutants were built based on the three-dimensional structure of the wild-type GB1 domain. During 2 ns of molecular dynamics simulations on these models, mutants containing up to 10 mutations in the helix retained the native fold, while another mutant with an additional mutation unfolded. This result is in agreement with our circular dichroism and NMR experiments, which indicated that the former mutants fold into a structure similar to the wild-type, as opposed to the latter mutant which is partly unfolded. Additionally, a mutant containing six mutations scattered through the surface of the domain, and which is unfolded, was also detected by the simulation. This study suggests that molecular dynamics calculations could be performed on molecular models of mutants of a protein to evaluate their foldability, prior to a mutagenesis experiment.  相似文献   

18.
We describe here a systematic investigation into the role of position a in the hydrophobic core of a model coiled-coil protein in determining coiled-coil stability and oligomerization state. We employed a model coiled coil that allowed the formation of an extended three-stranded trimeric oligomerization state for some of the analogs; however, due to the presence of a Cys-Gly-Gly linker, unfolding occurred from the same two-stranded monomeric oligomerization state for all of the analogs. Denaturation from a two-stranded state allowed us to measure the relative contribution of 20 different amino acid side chains to coiled-coil stability from chemical denaturation profiles. In addition, the relative hydrophobicity of the substituted amino acid side chains was assessed by reversed-phase high-performance liquid chromatography and found to correlate very highly (R = 0.95) with coiled-coil stability. We also determined the effect of position a in specifying the oligomerization state using ultracentrifugation as well as high-performance size-exclusion chromatography. We found that nine of the analogs populated one oligomerization state exclusively at peptide concentrations of 50 microM under benign buffer conditions. The Leu-, Tyr-, Gln-, and His-substituted analogs were found to be exclusively three-stranded trimers, while the Asn-, Lys-, Orn-, Arg-, and Trp-substituted analogs formed exclusively two-stranded monomers. Modeling results for the Leu-substituted analog showed that a three-stranded oligomerization state is preferred due to increased side-chain burial, while a two-stranded oligomerization state was observed for the Trp analog due to unfavorable cavity formation in the three-stranded state.  相似文献   

19.
Using a dimeric bZIP protein, we have designed a leucine zipper that becomes more stable after a serine in the e position is phosphorylated by protein kinase A (delta delta GP = -1.4 kcal mol-1 dimer-1 or -0.7 kcal mol-1 residue-1). Mutagenesis studies indicate that three arginines form a network of inter-helical (i,i' + 5; i, i' + 2) and intra-helical (i, i + 4) attractive interactions with the phosphorylated serine. When the arginines are replaced with lysines, the stabilizing effect of serine phosphorylation is reduced (delta delta GP = -0.5 kcal mol-1 dimer-1). The hydrophobic interface of the leucine zipper needs a glycine in the d position to obtain an increase in stability after phosphorylation. The phosphorylated protein binds DNA with a 15-fold higher affinity. Using a transient transfection assay, we document a PKA dependent four-fold activation of a reporter gene. Phosphorylation of a threonine in the same e position decreases the stability by delta delta GP = +1.2 kcal mol-1 dimer-1. We present circular dichroism (CD) thermal denaturations of 15 bZIP proteins before and after phosphorylation. These data provide insights into the structural determinants that result in stabilization of a coiled coil by phosphorylation.  相似文献   

20.
Fifteen years ago it was shown that an alpha-aminoisobutyric acid (Aib) residue is significantly more effective than an L-Pro or a D-amino acid residue in inducing beta-sheet disruption in short model peptides. As this secondary structure element is known to play a crucial role in the neuropathology of Alzheimer's disease, it was decided to check the effect of Aib (and other selected, helix inducer, C(alpha)-tetrasubstituted alpha-amino acids) on the beta-sheet conformation adopted by a protected pentapeptide related to the sequence 17-21 of the beta-amyloid peptide. By use of FT-IR absorption and 1H NMR techniques it was found that the strong self-association characterizing the pentapeptide molecules in weakly polar organic solvents is completely abolished by replacing a single residue with Aib or one of its congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号