首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ~16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (~23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.  相似文献   

2.
Chloroplast transformation is a promising approach for the commercial production of recombinant proteins in plants. However, gene containment still remains an issue for the large-scale cultivation of transplastomic plants in the field. Here, we have evaluated the potential of using tobacco transplastomic cell suspensions for the fully contained production of a modified form of the green fluorescent protein (GFP+) and, a vaccine antigen, fragment C of tetanus toxin (TetC). Expression of these proteins in cell suspension cultures (and calli) was much less than in leaves, reaching 0.5%-1.5% of total soluble protein (TSP), but still produced 2.4-7.2 mg/L of liquid culture. Much better expression levels were achieved with a novel protein production platform in which transgenic cell suspension cultures were placed in a temporary immersion bioreactor in the presence of Thidiazuron to initiate shoot formation. GFP+ yield reached 660 mg/L of bioreactor (33% TSP), and TetC accumulated to about 95 mg/L (8% TSP). This new production platform, combining the rapid generation of transplastomic cell suspension cultures and the use of temporary immersion bioreactors, is a promising route for the fully contained low-cost production of recombinant proteins in chloroplasts.  相似文献   

3.
Multiple tandem copies of an immunogenic epitope comprising amino acids 8–23 of glycoprotein D of herpes simplex virus (HSV) were expressed as C-terminal fusions to tetanus toxin fragment C (TetC) in different Salmonella typhimurium live vaccine strains. Expression of the longer fusions was best in strains harbouring a lesion in htrA , a stress protein gene. SL3261, an aroA strain, did not effectively express the longer fusions. Mice immunised with an S. typhimurium C5 htrA mutant expressing fusions with two or four copies of the peptide made an antibody response to both the peptide and TetC, whereas constructs expressing one copy of the peptide only elicited antibody to TetC. A non-immunogenic octameric fusion underwent rearrangements in vivo resulting in a predominantly monomeric fusion. In contrast, the S. typhimurium SL3261 aroA vaccine expressing the TetC-tetrameric fusion did not elicit antibody to the peptide. Sera from mice immunised with a single dose of the dimer and tetramer fusions in the htrA strain neutralised HSV in vitro , and the mice were protected from HSV infection as measured by a reduction in virus load in the ear pinna. We have previously shown that mice vaccinated with salmonella expressing TetC are protected against tetanus toxin and virulent salmonella challenge. These results suggest that it may be possible to develop a multivalent vaccine against salmonellosis, tetanus and HSV.  相似文献   

4.
We report the novel application of a herbicide-resistance-based dominant marker for the positive selection of expression plasmids in Salmonella serovar vaccines. The beta-lactamase gene of the plasmid pTETnir15, which expresses fragment C of tetanus toxin (TetC), has been replaced with the bar gene marker. The new plasmid pBAT1 can be positively selected in vitro within Salmonella serovars in the presence of the herbicide DL-phosphinothricin. The expression of TetC remains unaltered, and the Salmonella enterica serovar Typhimurium vaccine strain is stable and immunogenic in vivo.  相似文献   

5.
In situ expression of a foreign antigen and an immune-modulating cytokine by intratumoral DNA electroporation was tested as a cancer therapy regimen. Transgene expression in the tumors was sustained for 2–3 weeks after intratumoral electroporation with mammalian expression plasmid containing firefly luciferase cDNA. Electroporation with cDNA encoding tetanus toxin fragment C (TetC) induced tetanus toxin-binding antibody, demonstrating immune recognition of the transgene product. Intratumoral electroporation with TetC and IL-12 cDNA after mice were treated with CD25 mAb to remove regulatory T cells induced IFN-γ producing T-cell response to tumor-associated antigen, heavy inflammatory infiltration, regression of established tumors and immune memory to protect mice from repeated tumor challenge. Intratumoral expression of immune-modulating molecules may be most suitable in the neoadjuvant setting to enhance the therapeutic efficacy and provide long-term protection.  相似文献   

6.
The development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine is likely to depend on knowledge of circulating variants of genes other than the commonly sequenced gag and env genes. In addition, full-genome data are particularly limited for HIV-1 subtype C, currently the most commonly transmitted subtype in India and worldwide. Likewise, little is known about sequence variation of HIV-1 in India, the country facing the largest burden of HIV worldwide. Therefore, the objective of this study was to clone and characterize the complete genome of HIV-1 from seroconverters infected with subtype C variants in India. Cocultured HIV-1 isolates were obtained from six seroincident individuals from Pune, India, and virtually full-length HIV-1 genomes were amplified, cloned, and sequenced from each. Sequence analysis revealed that five of the six genomes were of subtype C, while one was a mosaic of subtypes A and C, with multiple breakpoints in env, nef, and the 3′ long terminal repeat as determined by both maximal χ2 analysis and phylogenetic bootstrapping. Sequences were compared for preservation of known cytotoxic T lymphocyte (CTL) epitopes. Compared with those of the HIV-1LAI sequence, 38% of well-defined CTL epitopes were identical. The proportion of nonconservative substitutions for Env, at 61%, was higher (P < 0.001) than those for Gag (24%), Pol (18%), and Nef (32%). Therefore, characterized CTL epitopes demonstrated substantial differences from subtype B laboratory strains, which were most pronounced in Env. Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.  相似文献   

7.
For high-throughput in vitro protein selection using genotype (mRNA)–phenotype (protein) fusion formation and C-terminal protein labeling as a post-selection analysis, it is important to improve the stability and efficiency of mRNA templates for both technologies. Here we describe an efficient single-strand ligation (90% of the input mRNAs) using a fluorescein-conjugated polyethylene glycol puromycin (Fluor-PEG Puro) spacer. This ligation provides a stable c-jun mRNA with a flexible Fluor-PEG Puro spacer for efficient fusion formation (70% of the input mRNA with the PEG spacer) in a cell-free wheat germ translation system. When using a 5′ untranslated region including SP6 promoter and Ω29 enhancer (a part of tobacco mosaic virus Ω), an A8 sequence (eight consecutive adenylate residues) at the 3′ end is suitable for fusion formation, while an XA8 sequence (XhoI and the A8 sequence) is suitable for C-terminal protein labeling. Further, we report that Fluor-PEG N-t-butyloxycarbonylpuromycin [Puro(Boc)] spacer enhances the stability and efficiency of c-jun mRNA template for C-terminal protein labeling. These mRNA templates should be useful for puromycin-based technologies (fusion formation and C-terminal protein labeling) to facilitate high-throughput in vitro protein selection for not only evolutionary protein engineering, but also proteome exploration.  相似文献   

8.
9.
There is a great demand for technologies to simultaneously measure mRNA levels from multiple genes. Here we report a new quantitative competitive PCR technology and demonstrate simultaneous quantification of mRNA from multiple genes. First, a sequential 2-fold dilution series containing equal amounts of gene-specific standard DNAs for 10–12 genes is prepared. Second, the serially diluted standard DNAs are individually added to equal amounts of tissue-derived cDNA and amplified with gene-specific primers for 19–26 PCR cycles. Each gene/standard DNA pair is amplified individually. All amplified DNA products (n = 80) are resolved by one microplate array diagonal gel electrophoresis using 5% polyacrylamide. Changes in mRNA levels of ~15% can be detected by this technology. The mRNA levels from 10–12 genes were simultaneously quantified. mRNA levels were compared in RNA samples from rat liver, kidney and skeletal muscle. This quick, specific, sensitive, reproducible and yet inexpensive technique is ideal for simultaneously studying co-ordinate changes in mRNA levels from multiple genes.  相似文献   

10.
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem–loop (stem length, 7 bp; ΔG0 = –9.9 kcal/mol) in front of various gene sequences. In each case, the stem–loop was inserted 15 nt downstream from the start codon. Insertion of the stem–loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem–loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem–loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem–loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem–loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.  相似文献   

11.
Glutaredoxins are small heat-stable proteins that act as glutathione-dependent disulfide oxidoreductases. Two genes, designated GRX1 and GRX2, which share 40–52% identity and 61–76% similarity with glutaredoxins from bacterial and mammalian species, were identified in the yeast Saccharomyces cerevisiae. Strains deleted for both GRX1 and GRX2 were viable but lacked heat-stable oxidoreductase activity using β-hydroxyethylene disulfide as a substrate. Surprisingly, despite the high degree of homology between Grx1 and Grx2 (64% identity), the grx1 mutant was unaffected in oxidoreductase activity, whereas the grx2 mutant displayed only 20% of the wild-type activity, indicating that Grx2 accounted for the majority of this activity in vivo. Expression analysis indicated that this difference in activity did not arise as a result of differential expression of GRX1 and GRX2. In addition, a grx1 mutant was sensitive to oxidative stress induced by the superoxide anion, whereas a strain that lacked GRX2 was sensitive to hydrogen peroxide. Sensitivity to oxidative stress was not attributable to altered glutathione metabolism or cellular redox state, which did not vary between these strains. The expression of both genes was similarly elevated under various stress conditions, including oxidative, osmotic, heat, and stationary phase growth. Thus, Grx1 and Grx2 function differently in the cell, and we suggest that glutaredoxins may act as one of the primary defenses against mixed disulfides formed following oxidative damage to proteins.  相似文献   

12.
13.
The differentiation of both gene expression and protein function is thought to be important as a mechanism of the functionalization of duplicate genes. However, it has not been addressed whether expression or protein divergence of duplicate genes is greater in those genes that have undergone functionalization compared with those that have not. We examined a total of 492 paralogous gene pairs associated with morphological diversification in a plant model organism (Arabidopsis thaliana). Classifying these paralogous gene pairs into high, low, and no morphological diversification groups, based on knock-out data, we found that the divergence rate of both gene expression and protein sequences were significantly higher in either high or low morphological diversification groups compared with those in the no morphological diversification group. These results strongly suggest that the divergence of both expression and protein sequence are important sources for morphological diversification of duplicate genes. Although both mechanisms are not mutually exclusive, our analysis suggested that changes of expression pattern play the minor role (33%–41%) and that changes of protein sequence play the major role (59%–67%) in morphological diversification. Finally, we examined to what extent duplicate genes are associated with expression or protein divergence exerting morphological diversification at the whole-genome level. Interestingly, duplicate genes randomly chosen from A. thaliana had not experienced expression or protein divergence that resulted in morphological diversification. These results indicate that most duplicate genes have experienced minor functionalization.  相似文献   

14.
The c-myc protooncogene plays a key role in the abnormal growth regulation of melanoma cells. We have targeted three polypurine sequences within the mouse myc mRNA with acridine-modified, clamp-forming antisense oligonucleotides (AS ODNs) in an effort to inhibit growth of murine melanoma cells. These ODNs are unique in that they hybridize to the target mRNA by both Watson–Crick and Hoogsteen hydrogen bond interactions, forming a triple-stranded structure. At a concentration of 3 µM E1C, E2C and E3C inhibit B16-F0 proliferation by 76, 66 and 78%, respectively. Both immunofluorescent staining and western blot analysis corroborate a proportional reduction in c-Myc expression by all three ODNs. There were clear distinctions in the ability of these ODNs to inhibit tumor progression in C57BL/6 mice as a function of Myc expression. There was no synergy demonstrated between ODN E1C with cisplatin (DDP), which inhibited tumor growth by 77% alone and 82% in combination. Although E2C inhibited growth by 54%, its effect was decreased to 32% with DDP, when compared with controls. E3C, on the other hand, demonstrated a synergistic effect with DDP, inhibiting growth by 72% in combination, but only by 1% as a single agent. Immunofluorescence analysis of tumors for each group revealed a concomitant reduction in c-Myc expression in tumors from mice treated with the most active clamp ODN alone (E1C) or clamp ODN + DDP (E1C/E3C + DDP). Western blot analysis confirmed this decrease in target protein expression. Our results document the growth-inhibitory activity of two myc-targeting antisense clamp ODNs; E1C, which has activity as a single agent, and E3C, which has in vivo synergy with DDP pretreatment. These data confirm the antiproliferative effects of these novel ODNs and document an interesting synergy with the chemotherapeutic agent DDP.  相似文献   

15.
16.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the α, β, and γ Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.  相似文献   

17.

Background

Alcoholism is associated with susceptibility to infectious disease, particularly bacterial pneumonia. In the present study we described characteristics in alcoholic patients with bacterial meningitis and delineate the differences with findings in non-alcoholic adults with bacterial meningitis.

Methods/Principal Findings

This was a prospective nationwide observational cohort study including patients aged >16 years who had bacterial meningitis confirmed by culture of cerebrospinal fluid (696 episodes of bacterial meningitis occurring in 671 patients). Alcoholism was present in 27 of 686 recorded episodes of bacterial meningitis (4%) and alcoholics were more often male than non-alcoholics (82% vs 48%, P = 0.001). A higher proportion of alcoholics had underlying pneumonia (41% vs 11% P<0.001). Alcoholics were more likely to have meningitis due to infection with Streptococcus pneumoniae (70% vs 50%, P = 0.01) and Listeria monocytogenes (19% vs 4%, P = 0.005), whereas Neisseria meningitidis was more common in non-alcoholic patients (39% vs 4%, P = 0.01). A large proportion of alcoholics developed complications during clinical course (82% vs 62%, as compared with non-alcoholics; P = 0.04), often cardiorespiratory failure (52% vs 28%, as compared with non-alcoholics; P = 0.01). Alcoholic patients were at risk for unfavourable outcome (67% vs 33%, as compared with non-alcoholics; P<0.001).

Conclusions/Significance

Alcoholic patients are at high risk for complications resulting in high morbidity and mortality. They are especially at risk for cardiorespiratory failure due to underlying pneumonia, and therefore, aggressive supportive care may be crucial in the treatment of these patients.  相似文献   

18.
19.
High density oligonucleotide arrays have been used extensively for expression studies of eukaryotic organisms. We have designed a prokaryotic high density oligonucleotide array using the complete Escherichia coli genome sequence to monitor expression levels of all genes and intergenic regions in the genome. Because previously described methods for preparing labeled target nucleic acids are not useful for prokaryotic cell analysis using such arrays, a mRNA enrichment and direct labeling protocol was developed together with a cDNA synthesis protocol. The reproducibility of each labeling method was determined using high density oligonucleotide probe arrays as a read-out methodology and the expression results from direct labeling were compared to the expression results from the cDNA synthesis. About 50% of all annotated E.coli open reading frames are observed to be transcribed, as measured by both protocols, when the cells were grown in rich LB medium. Each labeling method individually showed a high degree of concordance in replica experiments (95 and 99%, respectively), but when each sample preparation method was compared to the other, ~32% of the genes observed to be expressed were discordant. However, both labeling methods can detect the same relative gene expression changes when RNA from IPTG-induced cells was labeled and compared to RNA from uninduced E.coli cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号