首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solution structure of the self-complementary DNA hexamer 5'd(GCATGC)2 comprising the specific target site for the restriction endonuclease Sph 1 is investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics. All the nonexchangeable proton resonances are assigned sequentially, and from time-dependent nuclear Overhauser enhancement measurements a set of 158 approximate interproton distances are determined. These distances are used as the basis of a structure refinement using restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained molecular dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 3.3 A]. In both cases convergence is achieved to essentially identical structures satisfying the experimental restraints and having a root mean square difference of only 0.3 A between them, which is within the rms fluctuations of the atoms about their average positions. These results suggest that the restrained molecular dynamics structures represent reasonable approximations of the solution structure. The converged structures are of the B type and exhibit clear sequence-dependent variations of helical parameters, some of which follow Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. In addition, the converged restrained dynamics structures appear bent with a radius of curvature of approximately 20 A. This bending appears to be due almost entirely to the large positive base roll angles, particularly at the Pyr-Pur steps. Further, the global and local helix axes are not coincident, and the global helix axis represents a superhelical axis which the bent DNA, when extended into an "infinite" helix by repeated translation and rotation, wraps around.  相似文献   

2.
The solution structure of the self-complementary DNA decamer 5'd(CTGGATCCAG)2 comprising the specific target site for the restriction endonuclease BamH1 is investigated by using nuclear magnetic resonance sectroscopy and restrained molecular dynamics. With the exception of the H5'/H5" sugar proton resonances, all the nonexchangeable proton resonances are assigned sequentially by using pure-phase absorption two-dimensional nuclear Overhauser enhancement spectroscopy. From the time dependence of the nuclear Overhauser effects a set of 160 approximate interproton distances is determined and used as the basis of a structure refinement employing restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 5.7 A]. In both cases convergence is achieved to very similar B-type structures with an atomic rms difference of 0.9 A which is comparable to the rms fluctuations of the atoms about their average positions. In addition, the rms difference between the experimental and calculated values of the interproton distances for both average restrained dynamics structures is approximately 0.3 A. These results suggest that the converged restrained molecular dynamics structures represent reasonable approximations of the solution structure. The average restrained dynamics structures exhibit clear sequence-dependent variations of torsion angles and helical parameters. In addition, the structures exhibit a small bend of around 10-20 degrees at the second (TpG) and eighth (CpA) base pair steps. This can be attributed to the positive base roll angles and large base pair slide values at the two Pyr-Pur steps. The central core of the decamer comprising the six-base recognition site for BamH1 (GGATCC), however, is straight.  相似文献   

3.
The solution structure of the self-complementary dodecamer 5'd(CGCGPATTCGCG)2, containing a purine-thymine base pair within the hexameric canonical recognition site GAATTC for the restriction endonuclease EcoRI, is investigated by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Nonexchangeable and exchangeable protons are assigned in a sequential manner. A set of 228 approximate interproton distance restraints are derived from two-dimensional nuclear Overhauser enhancement spectra recorded at short mixing times. These distances are used as the basis for refinement using restrained molecular dynamics in which the interproton distance restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight calculations are carried out, four starting from classical A-DNA and four from classical B-DNA. In all cases convergence to very similar B-type structures is achieved with an average atomic root mean square (rms) difference between the eight converged structures of 0.7 +/- 0.2 A, compared to a value of 6.5 A for that between the two starting structures. It is shown that the introduction of the purine-thymine mismatch does not result in any significant distortion of the structure. The variations in the helical parameters display a clear sequence dependence. The variation in helix twist and propeller twist follows Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. Overall the structure is straight. Closer examination, however, reveals that the central 5 base pair steps describe a smooth bend directed toward the major groove with a radius of curvature of approximately 38 A, which is compensated by two smaller kinks in the direction of the minor groove at base pair steps 3 and 9. These features can be explained in terms of the observed variation in roll and slide.  相似文献   

4.
A 500 MHz 1H-n.m.r. study on two self-complementary alternating pyrimidine-purine oligodeoxyribonucleotides, 5'-d(C-G-T-A-C-G) and 5'-d(A-C-G-C-G-C-G-T), is presented. By using the proton-proton nuclear Overhauser effect virtually complete assignments are obtained and a large number of interproton distances [113 in the case of 5'-d(C-G-T-A-C-G) and 79 in the case of 5'-d(A-C-G-C-G-C-G-T)], both intra- and inter-nucleotide, are determined. The interproton-distance data are consistent with an overall right-handed B-DNA-type structure for both oligonucleotides, in agreement with their B-type c.d. spectra. However, whereas 5'-d(C-G-T-A-C-G) adopts a conventional B-type structure with a mononucleotide repeating unit, the interproton-distance data provide evidence that 5'-d(A-C-G-C-G-C-G-T) has a dinucleotide repeating unit consisting of alternation in glycosidic bond and sugar pucker conformations.  相似文献   

5.
We have refined the structure of the DNA Three-Way Junction complex, TWJ-TC, described in the companion paper by quantitative analysis of two 2D NOESY spectra (mixing times 60 and 200 ms) obtained in D2O solution. NOESY crosspeak intensities extracted from these spectra were used in two kinds of refinement procedure: 1) distance-restrained energy minimization (EM) and molecular dynamics (MD) and 2) full relaxation matrix back calculation refinement. The global geometry of the refined model is very similar to that of a published, preliminary model (Leontis, 1993). Two of the helical arms of the junction are stacked. These are Helix 1, defined by basepairs S1-G1/S3-C12 through S1-C5/S3-G8 and Helix 2, which comprises basepairs S1-C6/S2-G5 through S1-G10/S2-G1. The third helical arm (Helix 3), comprised of basepairs S2-C6/S3-G5 through S2-C10/S3-G1 extends almost perpendicularly from the axis defined by Helices 1 and 2. The bases S1-C5 and S1-C6 of Strand 1 are continuously stacked across the junction region. The conformation of this strand is close to that of B-form DNA along its entire length, including the S1-C5 to S1-C6 dinucleotide step at the junction. The two unpaired bases S3-T6 and S3-C7 lie outside of the junction along the minor groove of Helix 1 and largely exposed to solvent. Analysis of the refined structure reveals that the glycosidic bond of S3-T6 exists in the syn conformation, allowing the methyl group of this residue to contact the hydrophobic surface of the minor groove of Helix 1, at S3-G11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The solution structure of the self-complementary DNA hexamer 5' d(C-G-T-A-C-G)2 is refined by restrained molecular dynamics in which 192 interproton distances, determined from pre-steady-state nuclear Overhauser enhancement measurements, are incorporated into the total energy of the system in the form of effective potentials. First the method is tested by applying an idealized set of distance restraints taken from classical B-DNA to a simulation starting off from A-DNA and vice versa. It is shown that in both cases the expected transition between A- and B-DNA occurs. Second, a set of restrained molecular dynamics calculations is carried out starting from both A- and B-DNA with the experimental interproton distances for 5' d(C-G-T-A-C-G)2 as restraints. Convergence to the same B-type structure is achieved with the interproton distances equal to the measured values within experimental error. The root-mean-square atomic difference between the two average restrained dynamics structures (less than 1 A) is approximately the same as the root-mean-square fluctuations of the atoms.  相似文献   

7.
A restrained least squares refinement of the solution structure of the double-stranded DNA undecamer 5'd(AAGTGT-GACAT).5'd(ATGTCACACTT) comprising a portion of the specific target site of the cAMP receptor protein in the gal operon is presented. The structure is refined on the basis of both distance and planarity restraints, 2331 in all. The distance restraints comprise 150 interproton distances determined from pre-steady state nuclear Overhauser enhancement measurements and 2159 other interatomic distances derived from idealized geometry (i.e., distances between covalently bonded atoms, between atoms defining fixed bond angles, and between atoms defining hydrogen bonding in AT and GC base pairs). Two refinements were carried out and in both cases the final RMS difference between the experimental and calculated interproton distances was 0.2 A. The difference between the two refined structures is small (overall RMS difference of 0.23 A) and represents the error in the refined coordinates. Although the refined structures have an overall B-type conformation there are large variations in many of the local conformational parameters including backbone and glycosidic bond torsion angles, helical twist and propellor twist, base roll and base tilt angles.  相似文献   

8.
The solution structure of the self-complementary hexamer 5'r(GCAUGC)2 is investigated by means of nuclear magnetic resonance spectroscopy and restrained molecular dynamics. The proton resonances are assigned in a sequential manner, and a set of 110 approximate interproton distance restraints are derived from the two-dimensional nuclear Overhauser enhancement spectra. These distances are used as the basis of a structure refinement by restrained molecular dynamics in which the experimental restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight restrained molecular dynamics simulations are carried out, four starting from a structure with regular A-type geometry and four from one with regular B-type geometry. The atomic root mean square (rms) difference between the initial structures is 3.2 A. In the case of all eight simulations, convergence is achieved both globally and locally to a set of very similar A-type structures with an average atomic rms difference between them of 0.8 +/- 0.2 A. Further, the atomic rms differences between the restrained dynamics structures obtained by starting out from the same initial structures but with different random number seeds for the assignment of the initial velocities are the same as those between the restrained dynamics structures starting out from the two different initial structures. These results suggest that the restrained dynamics structures represent good approximations of the solution structure. The converged structures exhibit clear sequence-dependent variation in some of the helical parameters, in particular helix twist, roll, slide, and propellor twist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Mitoxantrone is a promising antitumor drug having considerably reduced cardiotoxicity as compared to anthracyclines. Its binding to deoxyhexanucleotides sequence d-(ATCGAT)2 has been studied by proton and phosphorous-31 nuclear magnetic resonance spectroscopy. The stoichiometry reveals that 1:1 and 2:1 mitoxantrone-d(ATCGAT)2 complexes are formed in solution. Significant upfield shifts in 6H/7H, 2H/3H, 11NH, and 12NH protons (~.5?ppm) of mitoxantrone and T6NH imino protons (~.3?ppm) are observed. The phosphorous resonances do not shift significantly indicating that the base pairs do not open at any nucleotide step along the sequence of hexamer. Several inter-molecular Nuclear Overhauser Enhancement connectivities between mitoxantrone and hexanucleotide protons indicate that mitoxantrone chromophore stacks with terminal A1-T6 base pair and side chains involving 12CH2, 12NH, and 14OH protons are in close proximity of A1, T2, A5, and T6 bases. Absorption and emission spectra show red shift in wavelength maxima, which is characteristic of stacking interaction. At higher mitoxantrone to nucleic acid ratios, electrostatic interactions are dominant. The 2:1 drug/DNA stoichiometric structure obtained by restrained Molecular Dynamics simulations shows considerable distortions in backbone torsional angles and helicoidal parameters although structural fluctuations in 25?ps analysis of trajectory are found to be negligible. Mitoxantrone binds as a monomer at either or both ends of hexamer externally with side chains interacting specifically with DNA. The findings are relevant to the understanding of pharmacological action of drug.  相似文献   

10.
D R Hare  B R Reid 《Biochemistry》1986,25(18):5341-5350
The three-dimensional structure of d(CGCGTTTTCGCG) in solution has been determined from proton NMR data by using distance geometry methods. The rate of dipolar cross-relaxation between protons close together in space is used to calculate distances between proton pairs within 5 A of each other; these distances are used as input to a distance geometry algorithm that embeds this distance matrix in three-dimensional space. The resulting refined structures that best agree with the input distances are all very similar to each other and show that the DNA sequence forms a hairpin in solution; the bases of the loop region are stacked, and the stem region forms a right-handed helix. The advantages and limitations of the technique, as well as the computer requirements of the algorithm, are discussed.  相似文献   

11.
The structure in solution of the duplex RNA pentamer 5'(CACAG) . 5'(CUGUG), comprising the stem of the T psi C loop of yeast tRNAPhe, has been investigated by means of one- and two-dimensional nuclear Overhauser enhancement measurements. All non-exchangeable base and sugar proton resonances with the exception of the H5'/H5" sugar resonances are assigned in a sequential manner. From the relative intensities of the cross-peaks obtained in the pure-phase absorption two-dimensional nuclear Overhauser enhancement spectra at several mixing times, it is deduced that the RNA pentamer adopts an A-type conformation in solution. Cross-relaxation rates and interproton distances are determined from the time dependence of the nuclear Overhauser effects, principally by one-dimensional measurements. The structure of the RNA pentamer is then refined by restrained least-squares minimization on the basis of both distance and planarity restraints using fibre diffraction data as an initial model. The refined structure of the RNA pentamer is of the A type but exhibits local structural variations in glycosidic bond and backbone torsion angles as well as in propeller twist, base roll and base tilt angles.  相似文献   

12.
This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC5) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions.  相似文献   

13.
3-(9-Acridinylamino)-5-(hydroxymethyl)aniline (AHMA) is an anti-cancer agent with significant efficacy against murine leukemia and solid tumors. As a DNA topoisomerase inhibitor, AHMA is proposed to form a ternary complex with DNA and topoisomerase and bind to DNA in an intercalative manner. In order to understand the interactions between AHMA and DNA and study the structure-function relationship of amsacrine analogue, the AHMA-d(CGTACG)(2) complex was crystallized using the sitting-drop vapor-diffusion method. The native crystals diffract to 2.9-A resolution and belong to space group P3(1)21 or P3(2)21 with unit-cell parameters a=b=57.52, c=122.17 A when analyzed using Cu Kalpha radiation. Patterson map indicates that in the crystal, the directions of the DNA base stacking are nearly perpendicular to the c-axis of the crystal unit cell.  相似文献   

14.
The solution conformation of the self-complementary RNA-DNA hybrid hexamer 5'-[r(GCA)d(TGC)]2 is investigated by NMR spectroscopy and restrained molecular dynamics. The 1H-NMR spectrum is assigned in a sequential manner using two-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser enhancement spectroscopy. From the latter a set of 178 approximate interproton distance restraints are determined and used as the basis of a structure refinement by restrained molecular dynamics. Eight independent calculations are carried out, four from a classical A-type geometry and four from a classical B-type one. Convergence is achieved to very similar A-type structures with an average atomic root mean square difference between them of 1.0 +/- 0.2 A. The converged structures exhibit variations in helical parameters similar to those found previously for the analogue RNA hexamer 5'-r(GCAUGC)2 [(1988) Biochemistry 27, 1735-1743].  相似文献   

15.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

16.
The conformations and internal dynamics of the deoxyriboses of d(CGTACG)2 have been determined by NMR measurements at 15°C. The conformations of the sugars were determined using coupling constants and time-dependent NOE measurements. The J-splitting patterns of the H1, H2 and H2 resonances show that the sugars exist as mixtures of conformations near C2 endo (south) and C3 endo (north). The population of the south conformation was larger for the purines than for the pyrimidines. The overall tumbling time of the molecule in 2H2O was determined from measurements of the cross relaxation rate constant for the H6-H5 vectors of the two cytosine residues. Order parameters were determined for the H1-H2, H2-H2 and H2-H3 vectors from measurements of cross relaxation rate constants, making use of multi-spin analysis of the NOE build up rates. These order parameters are weakly dependent of the base sequence, and except for the terminal Cyt 1 residue, the H2-H2 and H2-H3 vectors are near unity, indicating the absence of rapid pseudorotation on the nanosecond time scale. However, the order parameter for the H1-H2 vector is significantly smaller than expected for rapid pseudorotation indicating the presence of other motions of the sugars. This motion must be about an effective axis parallel to the H2-H vector, and to occur with an angular fluctuation of about 30°.The results show that to obtain highly refined structures for nucleic acids by NMR the effects of spin diffusion and motional averaging cannot be ignored.Some of this work was presented as a poster at the 30th Experimental NMR Conference at Asilomar, California 1989  相似文献   

17.
A time-dependent transferred nuclear Overhauser enhancement study of the conformation of the single-stranded DNA 11mer 5'd(A-A-G-T-G-T-G-A-T-A-T) bound to the single-stranded DNA binding protein of Escherichia coli (SSB) is presented. It is shown that the conformation of the bound 11mer is that of a right-handed B-type helix similar to that of the free 11mer. The observation of internucleotide transferred nuclear Overhauser enhancements for every base step excludes the possibility of intercalation by aromatic protein residues. In addition, it is shown that the effective correlation time of the bases (80 ns) corresponds to that of a complex of molecular weight approximately 170,000, containing two SSB tetramers. The sugars, on the other hand, exhibit a shorter effective correlation time (40 ns), indicating the presence of internal motion. This suggests that the bases are anchored to the protein surface, possibly by hydrophobic interactions, whereas the sugar-phosphate groups are directed outwards towards the solvent.  相似文献   

18.
The crystal structure of the complex formed between the anthracycline antibiotic 3'-deamino-3'- hydroxy-4'-(O-L-daunosaminyl)-4-demethoxydoxo rubicin (MEN 10755), an active disaccharide analogue of doxorubicin, and the DNA hexamer d(CGATCG) has been solved to a resolution of 2.1 A. MEN 10755 exhibits a broad spectrum of antitumor activities, comparable with that of the parent compound, but there are differences in the mechanism of action as it is active in doxorubicin-resistant tumors and is more effective in stimulating topoisomerase DNA cleavage. The structure is similar to previously crystallised anthracycline- DNA complexes. However, two different binding sites arise from drug intercalation so that the two halves of the self-complementary duplex are no longer equivalent. In one site both sugar rings lie in the minor groove. In the other site the second sugar protrudes out from the DNA helix and is linked, through hydrogen bonds, to guanine of a symmetry-related DNA molecule. This is the first structure of an anthracycline-DNA complex where an interaction of the drug with a second DNA helix is observed. We discuss the present findings with respect to the relevance of the amino group for DNA binding and to the potential role played by the second sugar in the interactions with topoisomerases or other cellular targets.  相似文献   

19.
Crystals of the hexadeoxyoligomer d(5BrC-G-5BrC-G-5BrC-G) were grown at different temperatures (5 degrees C, 18 degrees C and 37 degrees C) in the absence of divalent cations. The crystals grown at 5 degrees C did not diffract X-rays, while those grown at 18 degrees C and 37 degrees C did. The oligomer adopts the left-handed ZI conformation in both crystals. The main difference resides in a more extensive hydration shell in the crystal grown at high temperature than in the crystal grown at low temperature. The high-temperature crystal displays a spine of hydration running deep in the minor groove and linking exocyclic O-2 atoms of the pyrimidine rings. In both crystalline forms, a hydrated sodium ion bound to the N-7 of a guanine ring was found. Strings of water molecules bridging phosphate anionic oxygen atoms are found along the backbone. The absolute values of the propeller-twist are also different in both structures although the values of the twist are very similar. The results point to the importance of the crystallization conditions when analysing fine structural details like solvation properties of oligomers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号