首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of ATP hydrolysis was studied at 0 degrees C and pH 7.5 using purified leaky vesicles of sarcoplasmic reticulum Ca2+-ATPase and enzyme solubilized in monomeric form with high concentrations of octaethylene glycol monododecyl ether (C12E8). The enzyme reaction of membranous Ca2+-ATPase was characterized by an initial burst in the hydrolysis of ATP and modulated by millimolar concentrations of ATP. For detergent-solubilized Ca2+-ATPase no burst and moderate low affinity modulation was observed, but the reaction was activated both at low (phosphorylating) and intermediate (K0.5 = 0.06 mM) ATP concentrations. A study of the partial reactions indicated that the effects of detergent and ATP were attributable to activation of the E1P----E2P transition which was rate-limiting. E32P dephosphorylation of membranous Ca2+-ATPase and the detergent-solubilized monomer comprised both a slow and a rapid component. The inhibitory effect of high Ca2+ was correlated with the development of a dominant contribution of slow phase dephosphorylation and with ATP-induced extra binding of Ca2+ binding which presumably takes place at the phosphorylation site (ECaP). Ca2+ was bound with lesser affinity to detergent-solubilized Ca2+-ATPase but with qualitatively the same characteristics as to membranous ECaP. Either Ca2+ or Mg2+ was required for dephosphorylation, also after detergent solubilization. It is concluded that ATP hydrolysis occurs by the same steps for membranous and monomeric Ca2+-ATPase and involves formation of either EMgP or ECaP as reaction intermediates, leading to biphasic kinetics, which, therefore, cannot be taken as evidence of an oligomeric function of the enzyme.  相似文献   

2.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

3.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport.  相似文献   

4.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

5.
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

6.
A Ca2+-ATPase (Ca2+- and Mg2+-requiring ATPase) was purified from a synaptic plasma-membrane fraction of rat brain. This enzyme had properties similar to those of plasma-membrane Ca2+-ATPases from other organs: its splitting of ATP was dependent on both Ca2+ and Mg2+, it bound in a Ca2+-dependent fashion to calmodulin-Sepharose and it cross-reacted with specific antibodies raised against human erythrocyte-membrane Ca2+-ATPase. It had an apparent Mr of 138 000, similar to those of plasma-membrane ATPases from human erythrocyte and from dog heart sarcolemma. Previous high-Ca2+-affinity ATPases observed in brain had Mr 100 000; in at least one case, such an ATPase probably represented a different type of enzyme, derived from coated vesicles.  相似文献   

7.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

8.
Rat liver plasma membranes hydrolyze ATP in the presence of Ca2+. The rate of hydrolysis is different when Mg2+ions are present in the incubation system. Several parameters differentiate Ca2+-ATPase from Mg2+-ATPase: a) the Km of ATP hydrolysis for Ca2+ (2.25 x 10(-4) M) is lower than for Mg2+ (2.14 x 10(-3) M); b) the shape of the activation curve is hyperbolic in the presence of Ca2+ and sigmoid in the presence of Mg2+; c) Mg2+-ATPase shows two different values of activation energy while Ca2+-ATPase presents only a single value; d) Ca2+-ATPase is inhibited, while Mg2+-ATPase is unaffected by cyclic AMP. Ca2+-ATPase is localized on the plasma membrane and is not inhibited by cysteine. It does not hydrolyze substrates different from nucleotides triphosphate, such as glucose-1-phosphate or alpha-glycero-phosphate. The enzyme is probably related to a mechanism of calcium transport.  相似文献   

9.
Ca2+-ATPase from sarcoplasmic reticulum was reconstituted into phospholipid/cholesterol (9:1) vesicles (RO). Sucrose density gradient centrifugation of the RO vesicles separated a light layer (RL) with a high lipid/protein ratio and a heavy layer (RH). RH vesicles exhibited a high rate of Ca2+-dependent ATP hydrolysis but did not accumulate Ca2+. RL vesicles, on the other hand, showed an initial molar ratio of Ca2+ uptake to ATP hydrolysis of approximately 1.0. Internal trapping of transported Ca2+ facilitated studies over periods of several minutes. Ca2+ transport and ATP hydrolysis declined concomitantly, reaching levels near 0 with external Ca2+ concentrations less than or equal to 2 microM. Ca2+ uptake was inhibited by the Ca2+ ionophore A23187, the detergent Triton X-100, and the metabolic inhibitor quercetin. Ca2+ transport generated a transient electrical potential difference, inside positive. This finding is consistent with the hypothesis that the Ca2+ pump is electrogenic. Steady state electrical potentials across the membrane were clamped by using potassium gradients and valinomycin, and monitored with voltage-sensitive dyes. Over a range of +50 to -100 mV, there was an inverse relationship between the initial rate of Ca2+ uptake and voltage, but the rate of ATP hydrolysis was nearly constant. In contrast, lowering the external Ca2+ concentration depressed both transport and ATP hydrolysis. These findings suggest that the membrane voltage influences the coupling between Ca2+ transport and ATP hydrolysis.  相似文献   

10.
Interactions between transmembrane and cytoplasmic domains of Ca2+-ATPase from sarcoplasmic reticulum (SR) have been studied. To affect the hydrophobic transmembrane domain, we used four amphiphilic steroids - esters of a dibasic acid and 20-oxypregnene. All four steroids contained cholesterol-like nuclei and differed by the structure of side chains. Steroids with carboxyl groups in the side chains inhibited the rates of ATP hydrolysis and Ca2+ transport, whereas a steroid without the carboxyl group did not appreciably affect Ca2+-ATPase function. Fluorimetric titration of FITC-labelled Ca2+-ATPase in SR vesicles by Nd3+ showed that steroids increased the apparent dissociation constant for Nd3+ bound to the hydrolytic site, the potency order of the steroids being the same as for the sterol-induced inhibition of the hydrolytic activity of Ca2+-ATPase. These results suggest structural changes in the active site. Ca2+ transport was inhibited more efficiently by steroids than the hydrolytic activity of the enzyme. This could be partially due to the increase of the membrane passive permeability induced by steroids, which, in turn, reflected the efficiency of the interaction of the steroids with lipid bilayers. The effects of the steroids were largely dependent on their amphiphilicity (the availability of polar groups in regions A and D), the structure of the side chains, and, possibly, on the distance between the molecular polar groups. We suggest that the inhibition of hydrolytic and transport functions of Ca2+-ATPase in the SR membrane is due to the interaction of the steroids with the transmembrane alpha-helical segments.  相似文献   

11.
The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of Ca2+ was studied. At pH 6.0, 10 degrees C and in the absence of K+, the enzyme displays a very low velocity of ATP hydrolysis. Addition of up to 15% dimethyl sulfoxide increased this velocity severalfold (from 5-18 nmol of Pi X mg of protein-1 X h-1) and then decreased at higher solvent concentrations. Dimethyl sulfoxide increased both enzyme phosphorylation from ATP and the affinity for this substrate. Maximal levels of 1.0-1.2 nmol of EP X mg of protein-1 and apparent KM for ATP of 5 X 10(-6) M were obtained at a concentration of 30% dimethyl sulfoxide. The same preparation under optimal conditions (pH 7.5, 10 microM CaCl2, 100 mM KCl and no dimethyl sulfoxide at 37 degrees C) displays a velocity of ATP hydrolysis between 8 and 12 X 10(5) nmol of Pi X mg of protein-1 X h-1 while the phosphoenzyme levels varied between 3.5 and 4.0 nmol of EP X mg of protein-1. Enzyme phosphorylation from ATP in the absence of Ca2+ always preceded Pi liberation into the assay media. Two different phosphoenzyme species were formed which were kinetically distinguished by their decomposition rates. The observed steady-state velocity of ATP hydrolysis could be accounted for either by the decay of the fast component or by the simultaneous decomposition of both phosphoenzyme species. The hydrolysis of the phosphoenzyme formed in the absence of Ca2+ was KCl-stimulated and ADP-independent. The rate constant of breakdown was equal to that observed for the phosphoenzyme formed in the presence of Ca2+. It is suggested that the rapidly decaying phosphoenzyme (and possibly both rapidly and slowly decaying species) are intermediates in the reaction cycle of Mg2+-dependent ATP hydrolysis of sarcoplasmic reticulum Ca2+-ATPase and may represent a bypass of Ca2+ activation by dimethyl sulfoxide.  相似文献   

12.
Myotoxin a is a muscle-damaging toxin isolated from the venom of Crotalus viridis viridis. Its interaction with the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles purified from rabbit skeletal muscle was investigated. Myotoxin a inhibited Ca2+ loading and stimulated Ca2+-dependent ATPase without affecting unidirectional Ca2+ efflux. Its action was dose, time, and temperature dependent. Myotoxin a partially blocked the binding of specific anti-(rabbit SR Ca2+-ATPase) antibodies. It is concluded that myotoxin a attaches to the SR Ca2+-ATPase and uncouples Ca2+ uptake from Ca2+-dependent ATP hydrolysis. Myotoxin a also prevented the formation of decavanadate-induced two-dimensional crystalline arrays of the SR Ca2+-ATPase.  相似文献   

13.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

14.
Substrate specificity of the erythrocyte Ca2+-ATPase   总被引:2,自引:0,他引:2  
In the absence of Mg2+, the observed activity of the erythrocyte plasma membrane Ca2+-ATPase is due to the hydrolysis of CaATP at a low rate. In the presence of Mg2+, the activity of the enzyme is much higher, but it is inhibited by high levels of free Mg2+. This inhibition appears to be due to competition of Mg2+ and Ca2+ for a site on the enzyme, rather than for ATP.  相似文献   

15.
Trypsin cleaves the Ca2+-ATPase of sarcoplasmic reticulum into two major fragments (A and B), followed by subsequent cleavage into smaller peptides. Although the ATP-dependent Ca2+ transport is still observed after cleavage of the ATPase into the A and B fragments, the Ca2+ transport energized by acetyl phosphate is strongly inhibited. Covalent labeling of the Ca2+-ATPase by fluorescein 5'-isothiocyanate inhibited both the ATP and acetyl phosphate-dependent Ca2+ transport. Vanadate protected the A and B fragments from further hydrolysis and preserved the ability of the cleaved Ca2+-ATPase to form crystals and to show the characteristic conformational changes in response to Ca2+ and EGTA that are observed with the intact enzyme. The protective effect of vanadate may be useful for the isolation of the A and B fragments in functional form.  相似文献   

16.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

17.
Limited labeling of amino groups with fluorescamine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the Ca2+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increase the membrane permeability to Ca2+. Fluorescamine labeling of a purified Ca2+-ATPase devoid of aminophospholipids also inhibits Ca2+-ATPase activity, suggesting that labeling of lysine residues of the enzyme polypeptide is responsible for the inhibition of Ca2+-ATPase activity in sarcoplasmic reticulum. Fluorescamine labeling interferes with phosphoenzyme formation and decomposition in both the native vesicles and the purified enzyme; addition of ATP during labeling, and with less effectiveness ADP or AMP, protects both partial reaction steps. Addition of a nonhydrolyzable ATP analog protects phosphoenzyme formation but not decomposition. The inhibition of Ca2+ transport but not of Ca2+-ATPase occurs in sarcoplasmic reticulum vesicles labeled in the presence of ATP, indicating that the transport reaction is uncoupled from the Ca2+-ATPase reaction. The inhibition of Ca2+ transport but not of Ca2+-ATPase activity is also found in sarcoplasmic reticulum vesicles in which only phosphatidylethanolamine has reacted with fluorescamine. Furthermore, the extent of labeling of phosphatidylethanolamine is correlated with the inhibition of Ca2+ transport rates. The inhibition of Ca2+ transport is a reflection of the inhibition of Ca2+ translocation and is not due to an increase in Ca2+ efflux. We propose that labeling of phosphatidylethanolamine perturbs the lipid environment around the enzyme, producing a specific defect in the Ca2+ translocation reaction.  相似文献   

18.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

19.
Preparations of rabbit small intestine smooth muscle cell sarcolemma are capable of hydrolyzing ATP in the presence of millimolar concentrations of Mg2+ and Ca2+ and possess the activity of Mg2+,Ca2+-ATPase having a high affinity for Ca2+ (Km = 5.8 X 10(-6) M). The optimal conditions for the Mg2+,Ca2+-ATPase reaction were established. It was demonstrated that sarcolemmal preparations hydrolyze ATP, GTP, ITP and UTP almost at the same rates. The enzyme contains SH-groups that are unequally exposed to the water phase and are inhibited by 50% by p-chloromercurybenzoate and by 90% by dithionitrobenzoate. The Mg2+,Ca2+-ATPase activity is highly sensitive to oxytocin: at the concentration of 10(-7) MU/ml, the hormone completely inhibits the enzyme without affecting its Mg2+-, Ca2+- and Na+,K+-ATPase activities.  相似文献   

20.
Heparin is related to several protein receptors that control Ca2+ homeostasis. Here, we studied the effects of heparin on the plasma membrane Ca2+-ATPase from erythrocytes. Both ATP hydrolysis and Ca2+ uptake were inhibited by heparin without modification of the steady-state level of phosphoenzyme formed by ATP. Calmodulin did neither modify the inhibition nor the binding of heparin. Inhibition by heparin was counteracted by K+ but not by Li+. This effect was extended to other sulfated polysaccharides with high number of sulfate residues. Hydrolysis of p-nitrophenylphosphate was equally inhibited by heparin. No evidence for enzyme uncoupling was observed: Ca2+ uptake and ATP hydrolysis remained tightly associated at any level of heparin, and heparin did not increase the passive Ca2+ efflux of inside-out vesicles. Vanadate blocked this efflux, indicating that the main point of Ca2+ escape from these vesicles was linked to the Ca2+ pump. It is discussed that sulfated polysaccharides may physiologically increase the steady-state level of Ca2+ in the cytosol by inhibiting the Ca2+ pumps in a K+ (and tissue) regulated way. It is suggested that heparin regulates the plasma membrane Ca2+-ATPase by binding to the E2 conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号