首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
PTPmu, an Ig superfamily receptor protein-tyrosine phosphatase, promotes cell-cell adhesion and interacts with the cadherin-catenin complex. The signaling pathway downstream of PTPmu is unknown; therefore, we used a yeast two-hybrid screen to identify additional PTPmu interacting proteins. The membrane-proximal catalytic domain of PTPmu was used as bait. Sequencing of two positive clones identified the scaffolding protein RACK1 (receptor for activated protein C kinase) as a PTPmu interacting protein. We demonstrate that RACK1 interacts with PTPmu when co-expressed in a recombinant baculovirus expression system. RACK1 is known to bind to the src protein-tyrosine kinase. This study demonstrates that PTPmu association with RACK1 is disrupted by the presence of constituitively active src. RACK1 is thought to be a scaffolding protein that recruits proteins to the plasma membrane via an unknown mechanism. We have shown that the association of endogenous PTPmu and RACK1 in a lung cell line is increased at high cell density. We also demonstrate that the recruitment of RACK1 to both the plasma membrane and cell-cell contact sites is dependent upon the presence of the PTP mu protein in these cells. Therefore, PTPmu may be one of the proteins that recruits RACK1 to points of cell-cell contact, which may be important for PTPmu-dependent signaling in response to cell-cell adhesion.  相似文献   

2.
The receptor-like protein tyrosine phosphatase, PTPmu, displays structural similarity to cell-cell adhesion molecules of the immunoglobulin superfamily. We have investigated the ability of human PTPmu to function in such a capacity. Expression of PTPmu, with or without the PTPase domains, by recombinant baculovirus infection of Sf9 cells induced their aggregation. However, neither a chimeric form of PTPmu, containing the extracellular and transmembrane segments of the EGF receptor and the intracellular segment of PTPmu, nor the intracellular segment of PTPmu expressed as a soluble protein induced aggregation. PTPmu mediates aggregation via a homophilic mechanism, as judged by lack of incorporation of uninfected Sf9 cells into aggregates of PTPmu-expressing cells. Homophilic binding has been demonstrated between PTPmu-coated fluorescent beads (Covaspheres) and endogenously expressed PTPmu on MvLu cells. Additionally the PTPmu-coated beads specifically bound to a bacterially expressed glutathione-S-transferase fusion protein containing the extracellular segment of PTPmu (GST/PTPmu) adsorbed to petri dishes. Covaspheres coated with the GST/PTPmu fusion protein aggregated in vitro and also bound to PTPmu expressed endogenously on MvLu cells. These results suggest that the ligand for this transmembrane PTPase is another PTPmu molecule on an adjacent cell. Thus homophilic binding interactions may be an important component of the function of PTPmu in vivo.  相似文献   

3.
The receptor protein-tyrosine phosphatase mu (PTPmu) is a homophilic adhesion protein thought to regulate cell-cell adhesion in the vascular endothelium through dephosphorylation of cell junction proteins. In subconfluent cell cultures, PTPmu resides in an intracellular membrane pool; however, as culture density increases and cell contacts form, the phosphatase localizes to sites of cell-cell contact, and its expression level increases. These characteristics of PTPmu, which are consistent with a role in cell-cell adhesion, suggest that control of subcellular localization is an important mechanism to regulate the function of this phosphatase. To gain a better understanding of how PTPmu is regulated, we examined the importance of the conserved immunoglobulin domain, containing the homophilic binding site, in control of the localization of the enzyme. Deletion of the immunoglobulin domain impaired localization of PTPmu to the cell-cell contacts in endothelial and epithelial cells. In addition, deletion of the immunoglobulin domain affected the distribution of PTPmu in subconfluent endothelial cells when homophilic binding to another PTPmu molecule on an apposing cell was not possible, resulting in an accumulation of the mutant phosphatase at the cell surface with a concentration at the cell periphery in the region occupied by focal adhesions. This aberrant localization correlated with reduced survival and alterations in normal focal adhesion and cytoskeleton morphology. This study therefore illustrates the critical role of the immunoglobulin domain in regulation of the localization of PTPmu and the importance of such control for the maintenance of normal cell physiology.  相似文献   

4.
PTPmu regulates N-cadherin-dependent neurite outgrowth   总被引:5,自引:0,他引:5       下载免费PDF全文
Cell adhesion is critical to the establishment of proper connections in the nervous system. Some receptor-type protein tyrosine phosphatases (RPTPs) have adhesion molecule-like extracellular segments with intracellular tyrosine phosphatase domains that may transduce signals in response to adhesion. PTPmu is a RPTP that mediates cell aggregation and is expressed at high levels in the nervous system. In this study, we demonstrate that PTPmu promotes neurite outgrowth of retinal ganglion cells when used as a culture substrate. In addition, PTPmu was found in a complex with N-cadherin in retinal cells. To determine the physiological significance of the association between PTPmu and N-cadherin, the expression level and enzymatic activity of PTPmu were perturbed in retinal explant cultures. Downregulation of PTPmu expression through antisense techniques resulted in a significant decrease in neurite outgrowth on an N-cadherin substrate, whereas there was no effect on laminin or L1-dependent neurite outgrowth. The overexpression of a catalytically inactive form of PTPmu significantly decreased neurite outgrowth on N-cadherin. These data indicate that PTPmu specifically regulates signals required for neurites to extend on an N-cadherin substrate, implicating reversible tyrosine phosphorylation in the control of N-cadherin function. Together, these results suggest that PTPmu plays a dual role in the regulation of neurite outgrowth.  相似文献   

5.
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.  相似文献   

6.
The extracellular segment of the receptor-type type protein tyrosine phosphatase PTPmu, possesses an MAM domain, an immunoglobulin domain, and four fibronectin type-III repeats. It binds homophilically, i.e., PTPmu on the surface of one cell binds to PTPmu on an apposing cell, and the binding site lies within the immunoglobulin domain. The intracellular segment of PTPmu has two PTP domains and a juxtamembrane segment that is homologous to the conserved intracellular domain of the cadherins. In cadherins, this segment interacts with proteins termed catenins to mediate association with the actin cytoskeleton. In this article, we demonstrate that PTPmu associates with a complex containing cadherins, alpha- and beta-catenin in mink lung (MvLu) cells, and in rat heart, lung, and brain tissues. Greater than 80% of the cadherin in the cell is cleared from Triton X-100 lysates of MvLu cells after immunoprecipitation with antibodies to PTPmu; however, the complex is dissociated when lysates are prepared in more stringent, SDS-containing RIPA buffer. In vitro binding studies demonstrated that the intracellular segment of PTPmu binds directly to the intracellular domain of E-cadherin, but not to alpha- or beta-catenin. Consistent with their ability to interact in vivo, PTPmu, cadherins, and catenins all localized to points of cell-cell contact in MvLu cells, as assessed by immunocytochemical staining. After pervanadate treatment of MvLu cells, which inhibits cellular tyrosine phosphatase activity including PTPmu, the cadherins associated with PTPmu are now found in a tyrosine- phosphorylated form, indicating that the cadherins may be an endogenous substrate for PTPmu. These data suggest that PTPmu may be one of the enzymes that regulates the dynamic tyrosine phosphorylation, and thus function, of the cadherin/catenin complex in vivo.  相似文献   

7.
The receptor protein-tyrosine phosphatase PTPmu is a member of the Ig superfamily of cell adhesion molecules. The extracellular domain of PTPmu contains motifs commonly found in cell adhesion molecules. The intracellular domain of PTPmu contains two conserved catalytic domains, only the membrane-proximal domain has catalytic activity. The unique features of PTPmu make it an attractive molecule to transduce signals upon cell-cell contact. PTPmu has been shown to regulate cadherin-mediated cell adhesion, neurite outgrowth, and axon guidance. Protein kinase C is a component of the PTPmu signaling pathway utilized to regulate these events. To aid in the further characterization of PTPmu signaling pathways, we used a series of GST-PTPmu fusion proteins, including catalytically inactive and substrate trapping mutants, to identify PTPmu-interacting proteins. We identified IQGAP1, a known regulator of the Rho GTPases, Cdc42 and Rac1, as a novel PTPmu-interacting protein. We show that this interaction is due to direct binding. In addition, we demonstrate that amino acid residues 765-958 of PTPmu, which include the juxtamembrane domain and 35 residues of the first phosphatase domain, mediate the binding to IQGAP1. Furthermore, we demonstrate that constitutively active Cdc42, and to a lesser extent Rac1, enhances the interaction of PTPmu and IQGAP1. These data indicate PTPmu may regulate Rho-GTPase-dependent functions of IQGAP1 and suggest that IQGAP1 is a component of the PTPmu signaling pathway. In support of this, we show that a peptide that competes IQGAP1 binding to Rho GTPases blocks PTPmu-mediated neurite outgrowth.  相似文献   

8.
Receptor protein tyrosine phosphatase T (PTPRT/PTPrho) is frequently mutated in human cancers including colon, lung, gastric, and skin cancers. More than half of the identified tumor-derived mutations are located in the extracellular part of PTPrho. However, the functional significance of those extracellular domain mutations remains to be defined. Here we report that the extracellular domain of PTPrho mediates homophilic cell-cell aggregation. This homophilic interaction is very specific because PTPrho does not interact with its closest homologue, PTPmu, in a cell aggregation assay. We further showed that all five tumor-derived mutations located in the NH(2)-terminal MAM and immunoglobulin domains impair, to varying extents, their ability to form cell aggregates, indicating that those mutations are loss-of-function mutations. Our results suggest that PTPrho may play an important role in cell-cell adhesion and that mutational inactivation of this phosphatase could promote tumor migration and metastasis.  相似文献   

9.
Abstract

Receptor protein tyrosine phosphatases (RPTPs) have cell adhesion molecule–like extracellular domains coupled to cytoplasmic tyrosine phosphatase domains. PTPμ is the prototypical member of the type IIb subfamily of RPTPs, which includes PTPρ, PTPκ, and PCP-2. The authors performed the first comprehensive analysis of the subfamily in one system, examining adhesion and antibody recognition. The authors evaluated if antibodies that they developed to detect PTPmu also recognized other subfamily members. Notably, each antibody recognizes distinct subsets of type IIb RPTPs. PTPμ, PTPρ, and PTPκ have all been shown to mediate cell-cell aggregation, and prior work with PCP-2 indicated that it can mediate bead aggregation in vitro. This study reveals that PCP-2 is unique among the type IIb RPTPs in that it does not mediate cell-cell aggregation via homophilic binding. The authors conclude from these experiments that PCP-2 is likely to have a distinct biological function other than cell-cell aggregation.  相似文献   

10.
Huang YY  Lu H  Liu S  Droz-Rosario R  Shen Z 《PloS one》2012,7(1):e30638
Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors.  相似文献   

11.
The BCCIP alpha protein was identified as a BRCA2 and CDKN1A (p21, or p21(Waf1/Cip1)) Interacting Protein. It binds to a highly conserved domain proximate to the C-terminus of BRCA2 protein and the C-terminal domain of the CDK-inhibitor p21. Previous reports showed that BCCIP alpha enhances the inhibitory activity of p21 toward CDK2 and that BCCIP alpha inhibits the growth of certain tumor cells. Here we show that a second isoform, BCCIP beta, also binds to p21 and inhibits cell growth. The growth inhibition by BCCIP beta can be partially abrogated in p21 deficient cells. Overexpression of BCCIP beta delays the G1 to S progression and results in an elevated p21 expression. These data suggest BCCIP beta as a new regulator for the G1-S cell cycle progression and cell growth control.  相似文献   

12.
Normal prostate expresses the receptor protein-tyrosine phosphatase, PTPmu, whereas LNCaP prostate carcinoma cells do not. PTPmu has been shown previously to interact with the E-cadherin complex. LNCaP cells express normal levels of E-cadherin and catenins but do not mediate either PTPmu- or E-cadherin-dependent adhesion. Re-expression of PTPmu restored cell adhesion to PTPmu and to E-cadherin. A mutant form of PTPmu that is catalytically inactive was re-expressed, and it also restored adhesion to PTPmu and to E-cadherin. Expression of PTPmu-extra (which lacks most of the cytoplasmic domain) induced adhesion to PTPmu but not to E-cadherin, demonstrating a requirement for the presence of the intracellular domains of PTPmu to restore E-cadherin-mediated adhesion. We previously observed a direct interaction between the intracellular domain of PTPmu and RACK1, a receptor for activated protein kinase C (PKC). We demonstrate that RACK1 binds to both the catalytically active and inactive mutant form of PTPmu. In addition, we determined that RACK1 binds to the PKCdelta isoform in LNCaP cells. We tested whether PKC could be playing a role in the ability of PTPmu to restore E-cadherin-dependent adhesion. Activation of PKC reversed the adhesion of PTPmuWT-expressing cells to E-cadherin, whereas treatment of parental LNCaP cells with a PKCdelta-specific inhibitor induced adhesion to E-cadherin. Together, these studies suggest that PTPmu regulates the PKC pathway to restore E-cadherin-dependent adhesion via its interaction with RACK1.  相似文献   

13.
The beta1 family of integrins has been primarily studied as a set of receptors for the extracellular matrix. In this paper, we define a novel role for alpha3beta1 integrin in association with the tetraspanin CD151 as a component of a cell-cell adhesion complex in epithelial cells that directly stimulates cadherin-mediated adhesion. The integrin-tetraspanin complex affects epithelial cell-cell adhesion at the level of gene expression both by regulating expression of PTPmu and by organizing a multimolecular complex containing PKCbetaII, RACK1, PTPmu, beta-catenin, and E-cadherin. These findings demonstrate how integrin-based signaling can regulate complex biological responses at multiple levels to determine cell morphology and behavior.  相似文献   

14.
Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.  相似文献   

15.
Integrin plays an essential role in the formation of cell-matrix junctions and is also involved in the fundamental cellular functions. In the process of the formation of cell-cell junctions, an immunoglobulin-like cell-cell adhesion molecule nectin initially trans-interacts together and promotes the formation of adherens junctions (AJs) cooperatively with another cell-cell adhesion molecule cadherin. The activation of integrin alpha(v)beta(3) is critically necessary for this nectin-induced formation of AJs. However, after the establishment of AJs, integrin alpha(v)beta(3) becomes inactive and retains the association with nectin at AJs. The molecular mechanism of this dynamic regulation of integrin alpha(v)beta(3) during the formation of AJs remains unclear. We found here that the expression of phosphatidylinositol-phosphate kinase type Igamma90 (PIPKIgamma90), which is involved in the regulation of integrin activation, in Madin-Darby canine kidney cells, preferentially reversed the inactivation of integrin alpha(v)beta(3) at cell-cell adhesion sites and partially disrupted E-cadherin-based AJs. The activation of PIPKIgamma is correlated with its phosphorylation state. The tyrosine phosphatase protein-tyrosine phosphatase mu (PTPmu) effectively dephosphorylated PIPKIgamma and thus canceled the PIPKIgamma-dependent activation of integrin alpha(v)beta(3) by blocking the interaction of integrin alpha(v)beta(3) with talin. Moreover, PTPmu associated with nectin, and its phosphatase activity was enhanced by the trans-interaction of nectin, leading to the decrease in PIPKIgamma90 phosphorylation. Therefore, the trans-interaction of nectin essentially functions in the inactivation of integrin at AJs through the PTPmu-induced inactivation of PIPKIgamma.  相似文献   

16.
Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified beta-catenin, a component of adherens junctions, as a substrate of Pez by a "substrate trapping" approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of beta-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including beta-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro "wound" assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.  相似文献   

17.
Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP–eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.  相似文献   

18.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

19.
We demonstrate that neural crest cell-cell adhesion, cell-substrate adhesion, and ultimately cell motility, are highly dependent on the balanced action of tyrosine kinases and tyrosine phosphatases. Neural crest cell migration on fibronectin is diminished in the presence of the tyrosine phosphatase inhibitor vanadate or tyrosine kinase inhibitor herbimycin A, while cadherin-rich cell-cell adhesions are significantly increased. In contrast, cells treated with the kinase inhibitor genistein have decreased motility, rearrange rapidly and reversibly into a pavement-like monolayer, but have no increase in cadherin interactions. Genistein-sensitive tyrosine kinases may therefore abrogate a latent sensitivity of neural crest cells to contact-mediated inhibition of movement. Furthermore, we show that the activity of herbimycin A-sensitive kinases is necessary for focal adhesion formation in these cells. Moreover, the size and distribution of these adhesions are acutely sensitive to the actions of tyrosine phosphatases and genistein-sensitive kinases. We propose that in migrating neural crest cells there is a balance in phosphotyrosine signalling which minimises both cell-cell adhesion and contact inhibition of movement, while enhancing dynamic cell-substrate interactions and thus the conditions for motility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号