首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell–cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.  相似文献   

3.
4.
5.
Prostate cancer metastasis to bone marrow involves initial adhesion of tumor cells to the bone marrow endothelium, followed by transmigration and proliferation within the marrow. Rapid, specific adhesion of highly metastatic prostate adenocarcinoma cells (PC3M-LN4) to bone marrow endothelial cell (BMEC) lines requires a pericellular hyaluronan (HA) matrix and correlates with dramatically up-regulated HA synthase (HAS) expression. Non-metastatic prostate tumor cells (LNCaP) do not assemble a HA matrix, adhere poorly to BMECs, and express normal levels of HAS. Preferential bone metastasis of prostate carcinoma cells may therefore be facilitated by tumor cell HA biosynthesis. In this report, HAS gene expression was manipulated to investigate the direct impact of prostate tumor cell HA production on adhesion to BMECs. PC3M-LN4 cells stably transfected with antisense HAS2 and HAS3 failed to form pericellular matrices. Adhesion of these transfectants to BMECs was significantly diminished, comparable to the low level exhibited by LNCaP cells. Upon transfection with full-length HAS2 or HAS3, the non-adherent LNCaP cells retained pericellular HA and adhered to BMECs. The results of this study are consistent with a model in which HA matrix formation, BMEC adhesion, and metastatic potential are mediated by HAS expression.  相似文献   

6.
Osteopontin (OPN) is a tumor-associated, secreted phosphoprotein that has been implicated in breast cancer progression and metastasis. Research concerning how OPN functions in tumor progression has led to the identification of a limited number of genes that contribute functionally to OPN-induced cellular behaviors. Recent microarray analysis, comparing 21NT breast cancer cells transfected to constitutively overexpress OPN with control cells, revealed hyaluronan synthase 2 (HAS2) to be a gene highly up-regulated in OPN-overexpressing cells. In this study, we further examined the relationship between OPN and HAS2. We show that 21NT OPN-transfected cells express high levels of HAS2, which is associated with increased HA production and matrix retention and is necessary for tumor cell adhesion to bone marrow endothelial cells and anchorage-independent growth. Finally, stable transfection of antisense HAS2 into 21NT cells overexpressing OPN resulted in a reduction in HAS2 expression, HA production, and pericellular retention. Antisense-mediated down-regulation of HAS2 also resulted in a significant decrease in cellular proliferation and colony growth in soft agar. To our knowledge, this is the first report of the ability of OPN to regulate HAS2 expression and HA production in breast cancer cells and further illustrates a unique functional relationship by which enhanced HA production facilitates OPN-mediated cell behaviors.  相似文献   

7.
Hyaluronan is a large glycosaminoglycan that is abundant in the interstitium of the renal medulla/papilla. Papillary hyaluronan increases during hydration and decreases during dehydration. Due to its gel properties and ability to retain large volumes of water, hyaluronan plays a role in renal water handling by affecting the permeability characteristics of the papillary interstitium. The focus of the present investigation was the regulation of hyaluronan metabolism in the kidney, especially during variations in hydration status.In control papillas, HAS 2 mRNA was heavily expressed and HAS 1 and 3 mRNA were weakly distributed. HYALs 1–3 mRNA were found at high expression and HYAL 4 was only weakly expressed. In hydrated animals, the diuretic response (12-fold) was followed by a 58% elevation in papillary hyaluronan and a 45% reduction in the excreted urinary hyaluronidase activity. No difference was determined in HAS 1–3 mRNA or HYAL 1, 3–4 mRNA expression, suggesting a change in activity rather than amount of protein. In dehydrated animals, antidiuresis was followed by a 22% reduction in papillary hyaluronan and a 62% elevation in excreted urinary hyaluronidase activity. Plasma vasopressin was 2.8-fold higher in dehydrated vs. hydrated rats.In conclusion, HAS 2 appears a major contributor to the baseline levels of hyaluronan. Reduced HAS 2 gene expression and increased excreted urinary hyaluronidase activity during dehydration contribute to the reduced amount of hyaluronan and to antidiuretic response.  相似文献   

8.
9.
Tan JX  Wang XY  Su XL  Li HY  Shi Y  Wang L  Ren GS 《PloS one》2011,6(7):e22836
Hyaluronic acid (HA) is a component of the Extra-cellular matrix (ECM), it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase) is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1) is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.  相似文献   

10.
11.
Heregulin (HRG)-induced cell responses are mediated by the ErbB family of tyrosine kinase receptors. In this study we have investigated HRG activation of ErbB2, extracellular signal-regulated kinase (ERK) signaling, and their role in regulating hyaluronan synthase (HAS) activity in human ovarian tumor cells (SK-OV-3.ipl cells). Immunological and biochemical analyses indicate that ErbB2, ErbB3, and ErbB4 are all expressed in SK-OV-3.ipl cells and that ErbB4 (but not ErbB3) is physically linked to ErbB2 following HRG stimulation. Furthermore, our data indicate that the HRG-induced ErbB2.ErbB4 complexes stimulate ErbB2 tyrosine kinase, which induces both ERK phosphorylation and kinase activity. The activated ERK then increases the phosphorylation of HAS1, HAS2, and HAS3. Consequently, all three HAS isozymes are activated resulting in hyaluronan (HA) production. Because HRG-mediated HAS isozyme phosphorylation/activation can be effectively blocked by either AG825 (an ErbB2 inhibitor) or thiazolidinedione compound (an ERK blocker), we conclude that ErbB2-ERK signaling and HAS isozyme phosphorylation/HA production are functionally coupled in SK-OV-3.ipl cells. HRG also promotes HA- and CD44-dependent oncogenic events (e.g. CD44-Cdc42 association, p21-activated kinase 1 activation, and p21-activated kinase 1-filamin complex formation) and tumor cell-specific behaviors in an ErbB2-ERK signaling-dependent manner. Finally, we have found that the down-regulation of HAS isozyme expression (by transfecting cells with HAS1/HAS2/HAS3-specific small interfering RNAs) not only inhibits HRG-mediated HAS phosphorylation/activation and HA production but also impairs CD44-specific Cdc42-PAK1/filamin signaling, cytoskeleton activation and tumor cell behaviors. Taken together, these findings clearly indicate that HRG activation of ErbB2-ERK signaling modulates HAS phosphorylation/activation and HA production leading to CD44-mediated oncogenic events and ovarian cancer progression.  相似文献   

12.
Versican, a large chondroitin sulphate proteoglycan and hyaluronan (HA), a non-sulphated glycosaminoglycan are major constituents of the pericellular matrix. In many neoplastic tissues, changes in the expression of versican and HA affect tumour progression. Here, we analyse the synthesis of versican and hyaluronan by fibrosarcoma cells, and document how the latter is affected by PDGF-BB, bFGF and TGFB2, growth factors endogenously produced by these cells. Fibrosarcoma cell lines B6FS and HT1080 were utilised and compared with normal lung fibroblasts (DLF). The major versican isoforms expressed by DLF and B6FS cells were V0 and V1. Treatment of B6FS cells with TGFB2 showed a significant increase of V0 and V1 mRNAs. Versican expression in HT1080 cells was not significantly affected by any of the growth factors. In addition, TGFB2 treatment increased versican protein in DLF cells. HA, showed approximately a 2-fold and a 9-fold higher production in DLF cells compared to B6FS and HT1080 cells, respectively. In HT1080 cells, HA biosynthesis was significantly increased by bFGF, whereas, in B6FS cells it was increased by TGFB2 and PDGF-BB. Furthermore, analysis of HA synthases (HAS) expression indicated that HT1080 expressed similar levels of all three HAS isoforms in the following order: HAS2> HAS3> HAS1. bFGF shifted that balance by increasing the abundance of HAS1. The major HAS isoform expressed by B6FS cells was HAS2. PDGF-BB and TGFB2 showed the most prominent effects by increasing both HAS2 and HAS1 isoforms. In conclusion, these growth factors modulated, through upregulation of specific HAS isoforms, HA synthesis, secretion and net deposition to the pericellular matrix.  相似文献   

13.
14.
The concentration and molecular weight of hyaluronan often dictates its physiological function. Consequently full characterisation of the anabolic products and turnover rates of HA could facilitate understanding of the role that HA metabolism plays in disease processes. In order to achieve this it is necessary to interrupt the dynamic balance between concurrent HA synthesis and degradation, achievable through the inhibition of the hyaluronidases, a group of enzymes which degrade HA. The sulphated polysaccharide, dextran sulphate has been demonstrated to competitively inhibit testicular hyaluronidase in a non-biological system, but its application to in vitro biological systems had yet to be developed and evaluated. This study determined the inhibitory concentrations of dextran sulphate against both testicular and Streptomyces hyaluronidase in a cell-free and breast cancer model followed by characterisation of the effect that hyaluronidase inhibition exerted on HA synthesis and degradation. The IC(100) of dextran sulphate for both hyaluronidases in a cell-free and biological system was determined to be >or=400 microg/ml. At concentrations up to 10 mg/ml the dextran sulphate did not effect breast cancer cell proliferation or morphology, while at 400 microg/ml HA degradation was totally inhibited, enabling an accurate quantitation of HA production as well as characterisation of the cell-associated and liberated HA. FACS quantitation of the HA receptor CD44, HA synthase and the hyaluronidases HYAL 1 and HYAL 2 demonstrated that dextran sulphate down-regulated CD44 and HA synthase while upregulating the hyaluronidases. These results suggest dynamic feedback signalling and complex mechanisms occur in the net deposition of HA in vivo.  相似文献   

15.

Background

Although pancreatic ductal adenocarcinoma is characterized by an abundant stroma enriched with hyaluronan (HA), the prognostic impact of HA and its regulators remains unknown.

Methods

Using immunohistochemistry, expression patterns of HA and its regulators, including a synthesizing enzyme (HAS2), and a degrading enzyme (HYAL1) were investigated in patients who received surgical resection. The prognostic significance of these markers and other clinicopathological variables was determined using univariate and multivariate analyses. The HA levels were determined quantitatively by enzyme-linked immunosorbent assay (ELISA).

Results

We found that strong expressions of HA (P=0.008) and HAS2 (P=0.022) were significantly associated with shorter survival time after surgery. By contrast, weak expression of HYAL1 was significantly associated with poor survival (P=0.001). In multivariate analysis, tumor stage (hazard ratio (HR)=2.76, 95% confidence interval (CI): 1.14-6.66 P=0.024), strong HA expression (HR=6.04, 95%CI: 1.42-25.69 P=0.015), and weak HYAL1 expression (HR=3.16, 95%CI: 1.19-8.40 P=0.021) were independent factors predicting poor survival. ELISA revealed higher concentration of HA in pancreatic cancer tissues than in normal pancreatic tissues (P=0.001).

Conclusion

These findings suggest, for the first time, that HA and its regulators may have prognostic impact in patients with pancreatic cancer.  相似文献   

16.
Hyaluronan, a high-molecular-weight glycosaminoglycan of cartilage, is deposited directly into the extracellular space by hyaluronan synthases, while hyaluronan catabolism is mediated by the hyaluronidases. An in vitro cell culture system has been established in which human dermal fibroblasts are induced to undergo chondrogenesis. Here, we describe the differential modulation of the hyaluronidases and the up-regulation of the hyaluronan receptor, CD44, during such chondrogenesis. Dermal fibroblasts, plated in micromass cultures in the presence of lactic acid and staurosporine for 24 h, were then placed in serum-free, chemically defined medium. At 3 days, RNA was extracted and RT-PCR performed using primers for the hyaluronidase genes. Marked increase in HYAL1 expression was observed, with only moderate increases occurring in HYAL2 and HYAL3. No expression of HYAL4 and PH-20, the sperm-associated hyaluronidase, was detected. RNA levels correlated well with changes in hyaluronidase enzyme activity. Finally, greater expression and staining for the hyaluronan receptor, CD44s, the standard form, were detected. Differential expression of the somatic hyaluronidases and CD44-mediated hyaluronan turnover play a critical role in cartilage development from mesenchymal precursors.  相似文献   

17.
In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.  相似文献   

18.
Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency(Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.  相似文献   

19.
20.
Changes in extracellular matrix (ECM) are one of many components that contribute to impaired wound healing in aging. This study examined the effect of age on the glycosaminoglycan hyaluronan (HA) in normal and wounded dermis from young (4–6 month-old) and aged (22–24 month-old) mice. HA content and size were similar in the normal dermis of young and aged mice. Dermal explants labeled with [3H]-glucosamine showed decreased generation of smaller forms of HA in aged explants relative to young explants. Aged mice exhibited delayed wound repair compared with young mice with the greatest differential at 5 days. Expression of hyaluronan synthase (HAS) 2 and 3, and hyaluronidase (HYAL) 1–3 mRNA in wounds of young and aged mice was similar. There was a trend toward a decreased HYAL protein expression in aged wound dermis, which was accompanied by changes in detectable HYAL activity. Total HA content was similar in young and aged wound dermis. There was significantly less HA in the lower MW range (~ 250 kDa and smaller) in 5-day wound dermis, but not in 9-day wound dermis, from aged mice relative to young mice. We propose that decreased cleavage of HA is an additional component of impaired dermal wound healing in aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号