首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
In higher eukaryotic cells, the p53 protein is degraded by the ubiquitin-26S proteasome system mediated by Mdm2 or the human papilloma virus E6 protein. Here we show that COP9 signalosome (CSN)-specific phosphorylation targets human p53 to ubiquitin-26S proteasome-dependent degradation. As visualized by electron microscopy, p53 binds with high affinity to the native CSN complex. p53 interacts via its N-terminus with CSN subunit 5/Jab1 as shown by far-western and pull-down assays. The CSN-specific phosphorylation sites were mapped to the core domain of p53 including Thr155. A phosphorylated peptide, Deltap53(145-164), specifically inhibits CSN-mediated phosphorylation and p53 degradation. Curcumin, a CSN kinase inhibitor, blocks E6-dependent p53 degradation in reticulocyte lysates. Mutation of Thr155 to valine is sufficient to stabilize p53 against E6-dependent degradation in reticulocyte lysates and to reduce binding to Mdm2. The p53T155V mutant accumulates in both HeLa and HL 60 cells and exhibits a mutant (PAb 240+) conformation. It induces the cyclin-dependent inhibitor p21. In HeLa and MCF-7 cells, inhibition of CSN kinase by curcumin or Deltap53(145-164) results in accumulation of endogenous p53.  相似文献   

3.
The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr-Pad1-N-terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag-CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull-down experiments revealed the formation of an intact Flag-CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull-downs also precipitated cullins indicating the existence of super-complexes consisting of the CSN, the 26S proteasome and cullin-based Ub ligases. Permanent expression of a chimerical subunit (Flag-CSN2-Rpn6) consisting of the N-terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag-CSN2 overexpression was de-novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c-Jun in B8 cells. The possible role of super-complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.  相似文献   

4.
Reactivation of the wild-type p53 pathway is one key goal aimed at developing targeted therapeutics in the cancer research field. Although most p53 protein kinases form ‘p53-activating’ signals, there are few kinases whose action can contribute to the inhibition of p53, as Casein kinase 1 (CK1) and Checkpoint kinase 1 (CHK1). Here we report on a pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3. These data demonstrate the emerging potential utility of multivalent kinase inhibitors.  相似文献   

5.
6.
We examined the role of the mitogen-activated protein (MAP) kinase pathway in tissue inhibitor of metalloproteinases-1 (TIMP-1)-mediated cellular effects in a human erythroleukemic cell line UT-7. We show that TIMP-1 induced both UT-7 cell erythroid differentiation and proliferation and tyrosine phosphorylation of many intracellular proteins. Using a panel of phosphospecific antibodies, we also demonstrate that phosphorylation of the p38 and c-Jun N-terminal kinases is increased by TIMP-1 whereas phosphorylation of extracellular signal-regulated kinase 1/2 is not induced. Moreover, inhibition of the p38 activity by SB203580 significantly reduces erythroid differentiation induced by TIMP-1, suggesting that the p38 MAP kinase pathway is involved in TIMP-1-induced erythroid differentiation.  相似文献   

7.
The growth suppressor protein p53 and the protein kinase CK2 are both implicated in cellular growth regulation. We previously found that p53 binds to protein kinase CK2 via its regulatory beta-subunit. In the present study, we analyzed the consequences of the binding of p53 to CK2 for the enzymatic activity of CK2 in vitro and in vivo. We found that the carboxy-terminus of p53 which is a potent transforming agent stimulated CK2 activity whereas full length wild-type p53 which is a growth suppressor inhibited the activity of protein kinase CK2. Inhibition of protein kinase CK2 by p53 was dose-dependent and was seen for various CK2 substrates. Experiments with heat-denatured p53 and the conformational mutant p53(R175H) revealed that an intact conformation of p53 seemed to be necessary. Transfection of wild-type and of mutant p53 into p53-/- cells showed that the inhibition of p53 on CK2 activity was also detectable in intact cells and specific for wild-type p53 indicating that the growth suppressing function of p53 might at least be partially achieved by down-regulation of protein kinase CK2.  相似文献   

8.
The IL-1 receptor antagonist (IL-1Ra) exists in four isoforms, three of which lack signal peptides and are primarily intracellular proteins. The biologic roles of the intracellular isoforms of IL-1Ra have remained unknown. The objective of these studies was to determine whether the major intracellular isoform of IL-1Ra 18-kDa type 1 (icIL-1Ra1), mediated unique functions inside cells. A yeast two-hybrid screen with HeLa cell lysates revealed specific binding of icIL-1Ra1, and not of the other IL-1Ra isoforms, to the third component of the COP9 signalosome complex (CSN3). This binding was confirmed by Far Western blot analysis, sedimentation on a glycerol gradient, glutathione pull-down experiments, and coimmunoprecipitation. In addition to binding specifically to CSN3, icIL-1Ra1 inhibited phosphorylation of p53, c-Jun, and IkappaB by the crude CSN-associated kinase and of p53 by recombinant protein kinase CK2 and protein kinase D, both associated with CSN3. The biologic relevance of the interaction between icIL-1Ra1 and CSN3 was demonstrated in the keratinocyte cell lines KB and A431, both possessing abundant CSN3. A431 cells exhibited high levels of icIL-1Ra1 but lacked both detectable IL-1alpha-induced IL-6 and IL-8 production and phosphorylation of p38 MAPK. KB cells displayed the opposite pattern which was reversed after transfection with icIL-1Ra1 mRNA. Inhibition of CSN3 or of icIL-1Ra1 production through gene knockdown with specific small interfering RNA in A431 cells each led to an inhibition of IL-1alpha-induced IL-6 and IL-8 production. Thus, icIL-1Ra1 exhibits unique anti-inflammatory properties inside cells through binding to CSN3 with subsequent inhibition of the p38 MAPK signal transduction pathway.  相似文献   

9.
Hannss R  Dubiel W 《FEBS letters》2011,585(18):2845-2852
The COP9 signalosome (CSN) is a platform for protein communication in eukaryotic cells. It has an intrinsic metalloprotease that removes the ubiquitin (Ub)-like protein Nedd8 from cullins. CSN-mediated deneddylation regulates culling-RING Ub ligases (CRLs) and controls ubiquitination of proteins involved in DNA damage response (DDR). CSN forms complexes with CRLs containing cullin 4 (CRL4s) which act on chromatin playing crucial roles in DNA repair, checkpoint control and chromatin remodeling. Furthermore, via associated kinases the CSN controls the stability of DDR effectors such as p53 and p27 and thereby the DDR outcome. DDR is a protection against cancer and deregulation of CSN function causes cancer making it an attractive pharmacological target. Here we review current knowledge on CSN function in DDR.  相似文献   

10.
11.
12.
CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis.  相似文献   

13.
The growth suppressor protein p53 plays a main part in cellular growth control. Two of its key functions are sequence specific DNA binding and transactivation. Functions of p53 in growth control are regulated at least in part by its interaction with protein kinases. p53 binds to protein kinase CK2, formerly known as casein kinase 2, and it is phosphorylated by this enzyme. CK2 is composed of two regulating beta-subunits and two catalytic alpha- or alpha'-subunits and the interaction with p53 is mediated by the regulatory beta-subunit of CK2. Recently we showed that the beta-subunit could inhibit the sequence specific DNA binding activity of p53 in vitro. Based on this finding, we asked if a coexpression of the beta-subunit of CK2 with p53 in mammalian cells could inhibit the DNA binding activity of p53 in a physiological context. We found that the coexpression of the beta-subunit showed the same inhibitory effect as in the previous assays with purified proteins. Then, we investigated the effects of the coexpression of the beta-subunit of CK2 on the transactivation and transrepression activity of p53. We found that transactivation of the mdm2, p21(WAF1/CIP1) and cyclin G promoter was inhibited in three different cell lines whereas transactivation of the bax promoter was not affected in COS1 cells but down-regulated in MCO1 and SaosS138V21 cells. p53 mediated transrepression of the fos promoter was not influenced by coexpression of the CK2 beta-subunit. Taken together we propose a cell type dependent fine regulation of the p53 transactivation function by the CK2 beta-subunit in vivo, which does not affect p53 mediated transrepression.  相似文献   

14.
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.  相似文献   

15.
16.
17.
18.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

19.
20.
Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling   总被引:3,自引:0,他引:3  
Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates MAPK pathways, including the c-Jun NH(2)-terminal kinase (JNK) and p38 pathways. MLK3 and its family members have been implicated in JNK-mediated apoptosis. A survey of human cell lines revealed high levels of MLK3 in breast cancer cells. To learn more about MLK3 regulation and its signaling pathways in breast cancer cells, we engineered the estrogen-responsive human breast cancer cell line, MCF-7, to stably, inducibly express FLAG epitope-tagged MLK3. FLAG.MLK3 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by liquid chromatography/tandem mass spectrometry. Among the proteins identified were heat shock protein 90alpha,beta (Hsp90) and its kinase-specific co-chaperone p50(cdc37). We show that endogenous MLK3 complexes with Hsp90 and p50(cdc37). Further experiments demonstrate that MLK3 associates with Hsp90/p50(cdc37) through its catalytic domain in an activity-independent manner. Upon treatment of MCF-7 cells with geldanamycin, an ansamycin antibiotic that inhibits Hsp90 function, MLK3 levels decrease dramatically. Furthermore, tumor necrosis factor alpha-induced activation of MLK3 and JNK in MCF-7 cells is blocked by geldanamycin treatment. Our finding that geldanamycin treatment does not affect the cellular levels of the downstream signaling components, MAPK kinase 4, MAPK kinase 7, and JNK, suggests that Hsp90/p50(cdc37) regulates JNK signaling at the MAPK kinase kinase level. Previously identified Hsp90/p50(cdc37) clients include oncoprotein kinases and protein kinases that promote cellular proliferation and survival. Our findings reveal that Hsp90/p50(cdc37) also regulates protein kinases involved in apoptotic signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号