首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Molecular biology and genetics of Alzheimer's disease   总被引:4,自引:0,他引:4  
Like several other adult onset neurodegenerative diseases, Alzheimer's disease is a multifactorial illness with both genetic and non-genetic causes. Recent genetic studies have identified four genes associated with inherited risk for AD (presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E). These genes account for about half of the total genetic risk for Alzheimer's disease. It is suspected that several other Alzheimer's disease-susceptibility genes exist, and their identification is the subject of ongoing research. Nevertheless, biological studies on the effects of mutations in the four known genes has led to the conclusion that all of these genes cause dysregulation of amyloid precursor protein processing and in particular dysregulation of the handling of a proteolytic derivative termed Abeta. The accumulation of Abeta appears to be an early and initiating event that triggers a series of downstream processes including misprocessing of the tau protein. This cascade ultimately causes neuronal dysfunction and death, and leads to the clinical and pathological features of Alzheimer's disease. Knowledge of this biochemical cascade now provides several potential targets for the development of diagnostics and therapeutics.  相似文献   

4.
5.
6.
Amyotrophic lateral sclerosis (ALS) is a paralytic disorder caused by motor neuron degeneration. Mutations in more than 50 human genes cause diverse types of motor neuron pathology. Moreover, defects in five Mendelian genes lead to motor neuron disease, with two mutations reproducing the ALS phenotype. Analyses of these genetic effects have generated new insights into the diverse molecular pathways involved in ALS pathogenesis. Here, we present an overview of the mechanisms for motor neuron death and of the role of non-neuronal cells in ALS.  相似文献   

7.
The United Kingdom tissue-adapted bovine rotavirus growing in African green monkey kidney (BSC-1) cells was selected as a model system with which to study the detailed molecular virology of rotavirus replication. Study of the kinetics of infectious virus production revealed a fairly rapid replication cycle, with maximum yield of virus after 10 to 12 h at 37 degrees C. Progeny genome synthesis was first detected during the virus latent period at 2 to 3 h postinfection. Study of the kinetics of viral polypeptide synthesis showed that virus rapidly inhibited cellular polypeptide synthesis such that by 4 h postinfection, only virus-induced polypeptides, 15 of which were detected, were being synthesized. No qualitative changes in the pattern of viral polypeptide synthesis were observed during infection, although, based on kinetic synthesis, three quantitative classes of polypeptides were defined. Pulse-chase analysis revealed three post-translational changes in viral proteins, two of which were shown to be due to glycosylation. Tunicamycin inhibition studies were used to identify the putative non-glycosylated precursors of the two glycoproteins. Comparison of the infected-cell polypeptides with those present in purified virions revealed that mot of the virus-induced proteins were incorporated into virions, with only VP9 being a truly nonstructural protein. Some localization of the various polypeptides within the purified virion was achieved by producing viral cores.  相似文献   

8.
Molecular biology and genetics of mycoplasmas (Mollicutes).   总被引:54,自引:0,他引:54       下载免费PDF全文
  相似文献   

9.
Johnson  Norman A.  Porter  Adam H. 《Genetica》2001,(1):45-58
Despite the recent synthesis of developmental genetics and evolutionary biology, current theories of adaptation are still strictly phenomenological and do not yet consider the implications of how phenotypes are constructed from genotypes. Given the ubiquity of regulatory genetic pathways in developmental processes, we contend that study of the population genetics of these pathways should become a major research program. We discuss the role divergence in regulatory developmental genetic pathways may play in speciation, focusing on our theoretical and computational investigations. We also discuss the population genetics of molecular co-option, arguing that mutations of large effect are not needed for co-option. We offer a prospectus for future research, arguing for a new synthesis of the population genetics of development.  相似文献   

10.
The findings of molecular biology concerning biosynthesis of macromolecules are applied to the deduction of the kinetics of mass and volume growth in individual cells between divisions. The time course of increase of all macromolecules and of the total dry mass is found to be linear, in agreement with the available data; the corresponding volume growth curves are either quadratic, or exponential with a linear asymptote, depending on the relative contributions of metabolism and transport to cell water. A self-limiting mass and volume kinetics is derived by including repression among the other molecular mechanisms. Publication No. 825 of the Division of Basic Health Sciences.  相似文献   

11.
Wilms' tumour, a paediatric malignancy of the kidney, is a striking example of the relationship between aberrant development and cancer. Several different genetic loci have been implicated in the aetiology of the tumour; genomic imprinting also plays a role. One Wilms' tumour predisposition gene (WT1), encoding a zinc finger protein, is expressed in a limited set of tissues, including developing nephrons and gonads. The biology and genetics of Wilms' tumour underline the developmental relationship between kidneys and gonads.  相似文献   

12.
13.
Insulin inhibition of apolipoprotein B (apoB) secretion by primary cultures of rat hepatocytes was investigated in pulse-chase experiments using [35S]methionine as label. Radioactivity incorporation into apoBH and apoBL, the higher and lower molecular weight forms, was assessed after immunoprecipitation of detergent-solubilized cells and media and separation of the apoB forms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Hepatocyte monolayers were incubated for 12-14 h in medium with and without an inhibitory concentration of insulin. Cells were then incubated for 10 min with label, and, after differing periods of chase with unlabeled methionine, cellular medium and media labeled apoB were analyzed; greater than 90% of labeled apoB was present in cells at 10 and 20 min after pulse, and labeled apoB did not appear in the medium until 40 min of chase. Insulin treatment inhibited the incorporation of label into total apoB by 48%, into apoBH by 62%, and into apoBL by 40% relative to other cellular proteins. Insulin treatment favored the more rapid disappearance of labeled cellular apoBH with an intra-cellular retention half-time of 50 min (initial half-life of decay, t1/2 = 25 min) compared with 85 min in control (t1/2 = 60 min). Intracellular retention half-times of labeled apoBL were similar in control and insulin-treated hepatocytes and ranged from 80 to 100 min. After 180 min of chase, 44% of labeled apoBL in control and 32% in insulin-treated hepatocytes remained cell associated. Recovery studies indicated that insulin stimulated the degradation of 45 and 27% of newly synthesized apoBH and apoBL, respectively. When hepatocyte monolayers were continuously labeled with [35S]methionine and then incubated in chase medium with and without insulin, labeled apoBH was secreted rapidly, reaching a plateau by 1 h of chase, whereas labeled apoBL was secreted linearly over 3-5 h of chase. Insulin inhibited the secretion of immunoassayable apoB but not labeled apoB. Results demonstrate that 1) insulin inhibits synthesis of apoB from [35S]methionine, 2) insulin stimulates degradation of freshly translated apoB favoring apoBH over apoBL, and 3) an intracellular pool of apoB, primarily apoBL, exists that is largely unaffected by insulin. Overall, insulin action in primary hepatocyte cultures reduces the secretion of freshly synthesized apoB and favors secretion of preformed apoB enriched in apoBL.  相似文献   

14.
Type 1 diabetes mellitus (T1DM) is a widespread severe disease that results from autoimmune destruction of β cells in Langerhans islets of the pancreas. To date, several loci involved in T1DM have been reliably identified using various approaches: the MHC locus, VNTR within the 5′-nontranscibed region of the insulin gene (INS), CTLA4 (T-cell surface receptor), PTPN22, PTPN2 (T-cell tyrosine phosphatases), IL2 (interleukin 2, IL-2), IL2RA (IL-2 receptor α chain), KIAA0350 (unknown function), and IFIH1 (receptor for double-stranded DNA generated in virus infections). Functional analysis of their protein products confirmed the hypothesis that T1DM is underlain by deregulation of the mechanisms of immune tolerance and, on the other hand, a destructive immune response against the body’s own proteins after virus infection or some other immune stress. Thus the protein products of MHC, INS, PTPN22, and PTPN2 are involved in the intrathymic formation of the T-cell repertoire, responsible for immune defense of the body. On the other hand, nonspecific activation of T cells, which starts autoimmune destruction of pancreatic β cells, is most likely associated with the protein products of CTLA4, IL2, IL2RA, and, possibly, PTPN22 and PTPN2. Apart from the genes with unknown functions, the only exception is IFIH1, but its association with T1DM confirms that certain virus infections can activate autoreactive T cells and lead to T1DM.  相似文献   

15.
16.
The objective of the present study was to determine the effects of insulin on amphibian hepatocytes in primary culture. Hepatocytes were isolated from adult bullfrogs by collagenase perfusion and maintained as monolayers in serum-free medium. Cells cultured in the continuous presence of insulin exhibited a relatively constant rate of protein secretion over the first four to five days, whereas controls showed an almost three-fold decrease over the same time period. The decline in secreted proteins was equally represented in most exported proteins, except that serum albumin secretion showed twice as much of a decrease relative to the other proteins. The maintenance of protein secretion by insulin was the result of its effect on protein synthesis. The rate of protein synthesis was measured by the incorporation of (3H)-leucine into protein using culture medium containing 0.5 mM leucine, a condition where the specific radioactivity of leucyl-tRNA was shown to be equal to that of (3H)-leucine in the medium. Cultures maintained with insulin for 60 hours synthesized protein at two to three times the rate found in non-insulin treated controls whose rate of protein synthesis was first detectably decreased after nine hours of culture in the insulin-free medium. Sedimentation profiles of polyribosomes from hepatocytes maintained for 60 hours without insulin showed proportionately fewer ribosomes in large polysomes and more in monosomes and free ribosomal subunits than ribosomes from cells cultured with insulin. This result suggests that the decrease in protein synthesis found in the absence of insulin is due to a defect in initiation. Insulin does not exert its effect by regulating cellular levels of ATP; no change in ATP content was found in cells maintained with or without insulin. The results show that insulin maintains high levels of protein synthesis and secretion in amphibian hepatocytes. The hepatocytes in monlayer culture provide a system to study the molecular mechanisms involved in the translational control of protein synthesis by insulin.  相似文献   

17.
Nitrite reductase (ferredoxin:nitrite oxidoreductase, EC 1.6.6.1) carries out the six-electron reduction of nitrite to ammonium ions in the chloroplasts/plastids of higher plants. The complete or partial nucleotide sequences of a number of nitrite reductase apoprotein genes or cDNAs have been determined. Deduced amino acid sequence comparisons have identified conserved regions, one of which probably is involved in binding the sirohaem/4Fe4S centre and another in binding the electron donor, reduced ferredoxin. The nitrite reductase apoprotein is encoded by the nuclear DNA and is synthesised as a precursor carrying an N-terminal extension, the transit peptide, which acts to target the protein to, and within, the chloroplast/plastid. In those plants examined the number of nitrite reductase apoprotein genes per haploid genome ranges from one (barley, spinach) to four ( Nicotiana tabacum ). Mutants defective in the nitrite reductase apoprotein gene have been isolated in barley. During plastidogenesis in etiolated plants, synthesis of nitrite reductase is regulated by nitrate, light (phytochrome), and an uncharacterised 'plastidic factor' produced by functional chloroplasts. In leaves of green, white-light-grown plants up-regulation of nitrite reductase synthesis is achieved via nitrate and light and down-regulation by a nitrogenous end-product of nitrate assimilation, perhaps glutamine. A role for phytochrome has not been demonstrated in green, light-grown plants. Light regulation of nitrite reductase genes is related more closely to that of photosynthetic genes than to the nitrate reductase gene. In roots of green, white-light-grown plants nitrate alone is able to bring about synthesis of nitrite reductase, suggesting that the root may possess a mechanism that compensates for the light requirement seen in the leaf.  相似文献   

18.
The human MTH1 gene located on chromosome 7p22 consists of 5 major exons. MTH1 gene produces seven types of mRNAs and the B-type mRNAs with exon 2b-2c segments direct synthesis of three forms of MTH1 polypeptides (p22, p21, and p18) by alternative initiation of translation, while the others encode only p18. In human cells, p18, the major form is mostly localized in the cytoplasm with some in the mitochondria. A single nucleotide polymorphism (SNP) in exon 2, which is tightly liked to another SNP (GTG83/ATG83), creates an additional alternative in-frame AUG in B-type MTH1 mRNAs yielding the fourth MTH1 polypeptide, p26 that possesses an additional mitochondrial targeting signal. These SNPs are likely to be one of the risk factors for cancer or for neuronal degeneration. The 30 amino acid residues are identical between MTH1 and MutT, and there is a highly conserved region consisting of 23 residues (MTH1: Gly36 to Gly58), with 14 identical residues. A chimeric protein in which the 23 residue sequence of MTH1 was replaced with that of MutT, retains the capability to hydrolyze 8-oxo-dGTP, indicating that the 23 residue sequences of MTH1 and MutT are functionally and structurally equivalent, and constitute a functional phosphohydrolase module. Saturated mutagenesis of the module in MTH1 indicated that an amphipathic property of the alpha-helix I consisting of 14 residues of the module (Thr44 to Gly58) is essential to maintain the stable catalytic surface for 8-oxo-dGTPase. MTH1 but not MutT efficiently hydrolyzes two forms of oxidized dATP, 2-hydroxy-dATP and 8-oxo-dATP, as well as 8-oxo-dGTP and 8-oxo-GTP. Thus, MTH1 is designated as the oxidized purine nucleoside triphosphatase and has a much wider substrate specificity than MutT. There is a significant homology between MTH1 protein and the C-terminal half of human MYH protein, which may be involved in the recognition of 8-oxoguanine and 2-hydroxyadenine.  相似文献   

19.
ATP-sensitive potassium (KATP) channels play a key role in the regulation of insulin secretion by coupling glucose metabolism to the electrical activity of pancreatic beta-cells. To generate an electric signal of suitable magnitude, the plasma membrane of the beta-cell must contain an appropriate number of channels. An inadequate number of channels can lead to congenital hyperinsulinism, whereas an excess of channels can result in the opposite condition, neonatal diabetes. KATP channels are made up of four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by the genes KCNJ11 and ABCC8, respectively. Following synthesis, the subunits must assemble into an octameric complex to be able to exit the endoplasmic reticulum and reach the plasma membrane. While this biosynthetic pathway ensures supply of channels to the cell surface, an opposite pathway, involving clathrin-mediated endocytosis, removes channels back into the cell. The balance between these two processes, perhaps in conjunction with endocytic recycling, would dictate the channel density at the cell membrane. In this review, we discuss the molecular signals that contribute to this balance, and how an imbalance could lead to a disease state such as neonatal diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号